Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 33(8): 661-672, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329502

RESUMO

Previous in vitro studies demonstrated that Fringe glycosylation of the NOTCH1 extracellular domain at O-fucose residues in Epidermal Growth Factor-like Repeats (EGFs) 6 and 8 is a significant contributor to suppression of NOTCH1 activation by JAG1 or enhancement of NOTCH1 activation by DLL1, respectively. In this study, we sought to evaluate the significance of these glycosylation sites in a mammalian model by generating 2 C57BL/6J mouse lines carrying NOTCH1 point mutations, which eliminate O-fucosylation and Fringe activity at EGFs 6 (T232V) or 8 (T311V). We assessed changes to morphology during retinal angiogenesis, a process in which expression of Notch1, Jag1, Dll4, Lfng, Mfng, and Rfng genes coordinate cell-fate decisions to grow vessel networks. In the EGF6 O-fucose mutant (6f/6f) retinas, we observed reduced vessel density and branching, suggesting that this mutant is a Notch1 hypermorph. This finding agrees with prior cell-based studies showing that the 6f mutation increased JAG1 activation of NOTCH1 during co-expression with inhibitory Fringes. Although we predicted that the EGF8 O-fucose mutant (8f/8f) would not complete embryonic development due to the direct involvement of the O-fucose in engaging ligand, the 8f/8f mice were viable and fertile. In the 8f/8f retina, we measured increased vessel density consistent with established Notch1 hypomorphs. Overall, our data support the importance of NOTCH1 O-fucose residues for pathway function and confirms that single O-glycan sites are rich in signaling instructions for mammalian development.


Assuntos
Fucose , Receptor Notch1 , Animais , Camundongos , Fucose/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Camundongos Endogâmicos C57BL , Fator de Crescimento Epidérmico/química , Retina/metabolismo , Receptores Notch/metabolismo , Mamíferos/metabolismo , Glucosiltransferases
2.
Glycobiology ; 31(5): 582-592, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33351914

RESUMO

Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties. We previously reported that O-fucosylglycans on Notch are required for Notch receptor-ligand engagement controlling hematopoietic stem cell quiescence and retention in the marrow niche. Here, we generated recombinant fragments of NOTCH1 or NOTCH2 extracellular domain carrying the core ligand-binding regions (EGF11-13) either as unmodified forms or as O-fucosylglycan-modified forms. We found that the addition of O-fucose monosaccharide or the Fringe-extended forms of O-fucose to EGF11-13 showed substantial increases in binding to DLL4. Furthermore, the O-fucose and Fringe-extended NOTCH1 EGF11-13 protein displayed much stronger binding to DLL4 than the NOTCH2 counterpart. When assessed in an in vitro 3D osteoblastic niche model, we showed that the Fringe-extended NOTCH1 EGF11-13 fragment effectively released lodged HPC cells with a higher potency than the NOTCH2 blocking antibody. We concluded that O-fucose and Fringe-modified NOTCH1 EGF11-13 protein can be utilized as effective decoys for stem cell niche localized ligands to potentiate HPC egress and improve HPC collection for hematopoietic cell therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fucose/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Receptor Notch1/genética , Receptor Notch2/genética
3.
J Biol Chem ; 295(43): 14710-14722, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820046

RESUMO

Notch signaling is a cellular pathway regulating cell-fate determination and adult tissue homeostasis. Little is known about how canonical Notch ligands or Fringe enzymes differentially affect NOTCH1 and NOTCH2. Using cell-based Notch signaling and ligand-binding assays, we evaluated differences in NOTCH1 and NOTCH2 responses to Delta-like (DLL) and Jagged (JAG) family members and the extent to which Fringe enzymes modulate their activity. In the absence of Fringes, DLL4-NOTCH1 activation was more than twice that of DLL4-NOTCH2, whereas all other ligands activated NOTCH2 similarly or slightly more than NOTCH1. However, NOTCH2 showed less sensitivity to the Fringes. Lunatic fringe (LFNG) enhanced NOTCH2 activation by DLL1 and -4, and Manic fringe (MFNG) inhibited NOTCH2 activation by JAG1 and -2. Mass spectral analysis showed that O-fucose occurred at high stoichiometry at most consensus sequences of NOTCH2 and that the Fringe enzymes modified more O-fucose sites of NOTCH2 compared with NOTCH1. Mutagenesis studies showed that LFNG modification of O-fucose on EGF8 and -12 of NOTCH2 was responsible for enhancement of DLL1-NOTCH2 activation, similar to previous reports for NOTCH1. In contrast to NOTCH1, a single O-fucose site mutant that substantially blocked the ability of MFNG to inhibit NOTCH2 activation by JAG1 could not be identified. Interestingly, elimination of the O-fucose site on EGF12 allowed LFNG to inhibit JAG1-NOTCH2 activation, and O-fucosylation on EGF9 was important for trafficking of both NOTCH1 and NOTCH2. Together, these studies provide new insights into the differential regulation of NOTCH1 and NOTCH2 by Notch ligands and Fringe enzymes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos , Ligantes , Camundongos , Células NIH 3T3
4.
Vaccine ; 38(10): 2315-2325, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32005537

RESUMO

In the preparation of glycoconjugate vaccines in clinical practice, two highly immunogenic carrier proteins, CRM197 and tetanus toxoid (TT), are predominantly conjugated with the capsular polysaccharides (CPSs) of bacterial pathogens. In addition, TT has long been used as an effective vaccine to prevent tetanus. While these carrier proteins play an important role in immunogenicity and vaccine design alike, their defined human major histocompatibility complex class II (MHCII) T cell epitopes are inadequately characterized. In this current work, we use mass spectrometry to identify the peptides from these carrier proteins that are naturally processed and presented by human B cells via MHCII pathway. The MHCII-presented peptides are screened for their T cell stimulation using primary CD4+ T cells from four healthy adult donors. These combined methods reveal a subset of eleven CD4+ T cell epitopes that proliferate and stimulate human T cells with diverse MHCII allelic repertoire. Six of these peptides stand out as potential immunodominant epitopes by responding in three or more donors. Additionally, we provide evidence of these natural epitopes eliciting more significant T cell responses in donors than previously published TT peptides selected from T cell epitope screening. This study serves toward understanding carrier protein immune responses and thus enables the use of these peptides in developing novel knowledge-based vaccines to combat persisting problems in glycoconjugate vaccine design.


Assuntos
Proteínas de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T , Peptídeos/imunologia , Toxoide Tetânico/imunologia , Adulto , Apresentação de Antígeno , Glicoconjugados/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Masculino , Biblioteca de Peptídeos
5.
Dev Biol ; 416(1): 111-122, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297885

RESUMO

Protein O-fucosyltransferase 2 (POFUT2) adds O-linked fucose to Thrombospondin Type 1 Repeats (TSR) in 49 potential target proteins. Nearly half the POFUT2 targets belong to the A Disintegrin and Metalloprotease with ThromboSpondin type-1 motifs (ADAMTS) or ADAMTS-like family of proteins. Both the mouse Pofut2 RST434 gene trap allele and the Adamts9 knockout were reported to result in early embryonic lethality, suggesting that defects in Pofut2 mutant embryos could result from loss of O-fucosylation on ADAMTS9. To address this question, we compared the Pofut2 and Adamts9 knockout phenotypes and used Cre-mediated deletion of Pofut2 and Adamts9 to dissect the tissue-specific role of O-fucosylated ADAMTS9 during gastrulation. Disruption of Pofut2 using the knockout (LoxP) or gene trap (RST434) allele, as well as deletion of Adamts9, resulted in disorganized epithelia (epiblast, extraembryonic ectoderm, and visceral endoderm) and blocked mesoderm formation during gastrulation. The similarity between Pofut2 and Adamts9 mutants suggested that disruption of ADAMTS9 function could be responsible for the gastrulation defects observed in Pofut2 mutants. Consistent with this prediction, CRISPR/Cas9 knockout of POFUT2 in HEK293T cells blocked secretion of ADAMTS9. We determined that Adamts9 was dynamically expressed during mouse gastrulation by trophoblast giant cells, parietal endoderm, the most proximal visceral endoderm adjacent to the ectoplacental cone, extraembryonic mesoderm, and anterior primitive streak. Conditional deletion of either Pofut2 or Adamts9 in the epiblast rescues the gastrulation defects, and identified a new role for O-fucosylated ADAMTS9 during morphogenesis of the amnion and axial mesendoderm. Combined, these results suggested that loss of ADAMTS9 function in the extra embryonic tissue is responsible for gastrulation defects in the Pofut2 knockout. We hypothesize that loss of ADAMTS9 function in the most proximal visceral endoderm leads to slippage of the visceral endoderm and altered characteristics of the extraembryonic ectoderm. Consequently, loss of input from the extraembryonic ectoderm and/or compression of the epiblast by Reichert's membrane blocks gastrulation. In the future, the Pofut2 and Adamts9 knockouts will be valuable tools for understanding how local changes in the properties of the extracellular matrix influence the organization of tissues during mammalian development.


Assuntos
Proteína ADAMTS9/metabolismo , Fucosiltransferases/genética , Gastrulação/genética , Mutação , Proteína ADAMTS9/genética , Proteína ADAMTS9/fisiologia , Âmnio/embriologia , Animais , Padronização Corporal , Linhagem Celular , Células-Tronco Embrionárias , Feminino , Células HEK293 , Humanos , Masculino , Mesoderma/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...