Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703269

RESUMO

Microalgae are the richest source of natural carotenoids-accessory photosynthetic pigments used as natural antioxidants, safe colorants, and nutraceuticals. Microalga Bracteacoccus aggregatus IPPAS C-2045 responds to stresses, including high light, with carotenogenesis-gross accumulation of secondary carotenoids (the carotenoids structurally and energetically uncoupled from photosynthesis). Precise mechanisms of cytoplasmic transport and subcellular distribution of the secondary carotenoids under stress are still unknown. Using multimodal imaging combining micro-Raman imaging (MRI), fluorescent lifetime (τ) imaging (FLIM), and transmission electron microscopy (TEM), we monitored ultrastructural and biochemical rearrangements of B. aggregatus cells during the stress-induced carotenogenesis. MRI revealed a decline in the diversity of molecular surrounding of the carotenoids in the cells compatible with the relocation of the bulk of the carotenoids in the cell from functionally and structurally heterogeneous photosynthetic apparatus to the more homogenous lipid matrix of the oleosomes. Two-photon FLIM highlighted the pigment transformation in the cell during the stress-induced carotenogenesis. The structures co-localized with the carotenoids with shorter τ (mainly chloroplast) shrunk, whereas the structures harboring secondary carotenoids with longer τ (mainly oleosomes) expanded. These changes were in line with the ultrastructural data (TEM). Fluorescence of B. aggregatus carotenoids, either in situ or in acetone extracts, possessed a surprisingly long lifetime. We hypothesize that the extension of τ of the carotenoids is due to their aggregation and/or association with lipids and proteins. The propagation of the carotenoids with prolonged τ is considered to be a manifestation of the secondary carotenogenesis suitable for its non-invasive monitoring with multimodal imaging.

2.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446166

RESUMO

Pharmaceuticals including antibiotics are among the hazardous micropollutants (HMP) of the environment. Incomplete degradation of the HMP leads to their persistence in water bodies causing a plethora of deleterious effects. Conventional wastewater treatment cannot remove HMP completely and a promising alternative comprises biotechnologies based on microalgae. The use of immobilized microalgae in environmental biotechnology is advantageous since immobilized cultures allow the recycling of the microalgal cells, support higher cell densities, and boost tolerance of microalgae to stresses including HMP. Here, we report on a comparative study of HMP (exemplified by the antibiotic ceftriaxone, CTA) removal by suspended and chitosan-immobilized cells of Lobosphaera sp. IPPAS C-2047 in flasks and in a column bioreactor. The removal of CTA added in the concentration of 20 mg/L was as high as 65% (in the flasks) or 85% (in the bioreactor). The adsorption on the carrier and abiotic oxidation were the main processes contributing 65-70% to the total CTA removal, while both suspended and immobilized cells took up 25-30% of CTA. Neither the immobilization nor CTA affected the accumulation of arachidonic acid (ARA) by Lobosphaera sp. during bioreactor tests but the subsequent nitrogen deprivation increased ARA accumulation 2.5 and 1.7 times in the suspended and chitosan-immobilized microalgae, respectively. The study of the Lobosphaera sp. microbiome revealed that the immobilization of chitosan rather than the CTA exposure was the main factor displacing the taxonomic composition of the microbiome. The possibility and limitations of the use of chitosan-immobilized Lobosphaera sp. IPPAS C-2047 for HMP removal coupled with the production of valuable long-chain polyunsaturated fatty acids is discussed.


Assuntos
Quitosana , Clorófitas , Microalgas , Microbiota , Ácido Araquidônico/metabolismo , Ceftriaxona , Quitosana/metabolismo , Clorófitas/metabolismo , Ácidos Graxos/metabolismo , Microalgas/metabolismo , Biomassa
3.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239835

RESUMO

Microalgae are naturally adapted to the fluctuating availability of phosphorus (P) to opportunistically uptake large amounts of inorganic phosphate (Pi) and safely store it in the cell as polyphosphate. Hence, many microalgal species are remarkably resilient to high concentrations of external Pi. Here, we report on an exception from this pattern comprised by a failure of the high Pi-resilience in strain Micractinium simplicissimum IPPAS C-2056 normally coping with very high Pi concentrations. This phenomenon occurred after the abrupt re-supplementation of Pi to the M. simplicissimum culture pre-starved of P. This was the case even if Pi was re-supplemented in a concentration far below the level toxic to the P-sufficient culture. We hypothesize that this effect can be mediated by a rapid formation of the potentially toxic short-chain polyphosphate following the mass influx of Pi into the P-starved cell. A possible reason for this is that the preceding P starvation impairs the capacity of the cell to convert the newly absorbed Pi into a "safe" storage form of long-chain polyphosphate. We believe that the findings of this study can help to avoid sudden culture crashes, and they are also of potential significance for the development of algae-based technologies for the efficient bioremoval of P from P-rich waste streams.


Assuntos
Clorófitas , Microalgas , Fosfatos , Fósforo , Polifosfatos , Transporte Biológico
4.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839106

RESUMO

Broad application of CuO nanoparticles (CuO-NP) for industrial and household purposes leads to a continuous increase in their discharge to, and, hence, ever-increasing environmental hazards for aquatic ecosystems. Microalgae-based technologies hold promise for bioremediation of diverse hazardous micropollutants (HMP), including NP, from wastewater. In this study, we tested the ability of the green microalga Desmodesmus sp. to accumulate CuO-NP or their components. We also assessed the tolerance of this microalga to the environmentally relevant concentrations of CuO-NP. Using scanning electron microscopy, we demonstrated that the average size of CuO-NP was 50-100 nm, and their purity was confirmed with elemental composition analysis. Tests of the colloidal suspensions of CuO-NP showed that the hydrodynamic diameter of CuO-NP and their aggregates was below 100 nm. Flow cytometry analysis showed that CuO-NP at a concentration of 100 µg L-1 slightly inhibited the viability of microalgae cells and led to an increase in their oxidative stress. The assessment of the condition of photosystem II showed that CuO-NP exert a multifaceted effect on the photosynthetic apparatus of Desmodesmus sp., depending on the concentration of and the exposure to the CuO-NP. Desmodesmus sp. turned to be relatively tolerant to CuO-NP. In addition, the ICP-MS method revealed increased bioaccumulation of copper by microalgae cells in the experimental groups. The outcomes of this study indicate that the Desmodesmus sp. has a significant potential for bioremoval of the copper-based nanostructured HMP from an aquatic environment.

5.
Biochemistry (Mosc) ; 87(10): 1187-1198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273887

RESUMO

Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are widely employed in optogenetics, a modern method of light-dependent regulation of biological processes. To enable the search for new genes perspective for optogenetics, we have developed the PCR tests for the presence of genes of the cation and anion channelrhodopsins. Six isolates of green algae Haematococcus and Bracteacoccus from the White Sea region and 2 specimens of Rhodomonas sp. (Cryptophyta) from the regions of White and Black Seas were analyzed. Using our PCR test we have demonstrated the known Haematococcus rhodopsin genes and have discovered novel rhodopsin genes in the genus of Bracteacoccus. Two distantly homologous genes of anion channelrhodopsins were also identified in the cryptophytic Rhodomonas sp. from the White and Black Seas. These results indicate that the developed PCR tests might be useful tool for a broad-range screening of the Chlorophyta and Cryptophyta algae to identify unique channelrhodopsin genes.


Assuntos
Criptófitas , Rodopsina , Channelrhodopsins/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Rodopsina/genética , Mar Negro , Optogenética/métodos , Ânions , Cátions
6.
Biophys Rev ; 14(4): 973-983, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36124274

RESUMO

Variable fluorescence of chlorophyll (CF) of the photosynthetic apparatus is an ample source of valuable information on physiological condition of photosynthetic organisms. Currently, the most widespread CF-based technique is represented by recording pulse-amplitude modulated (PAM) induction of CF by saturating light. The CF-based monitoring techniques are increasingly employed for characterization of performance and stress resilience of microalgae in microalgal biotechnology. Analysis of CF induction curves reveals the fate of light energy absorbed by photosynthetic apparatus, the proportions of the energy that have been utilized for photochemistry (culture growth), and heat dissipated by photoprotective mechanisms. Hence CF and its derived parameters are an accurate proxy of the metabolic activity of the photosynthetic cell and the engagement of photoprotective mechanisms. This information is a solid foundation for making decisions on the microalgal culture management during the lab-scale and industrial-scale cultivation. Applications of CF and PAM include the monitoring of stressor (high light, nutrient deprivation, extreme temperatures, etc.) effects for assessment of the culture robustness. It also serves as a non-invasive express test for gauging the effect of assorted toxicants in microalgae. This approach is becoming widespread in ecological toxicology and environmental biotechnology, particularly for bioprospecting strains capable of the destruction of dangerous pollutants such as pharmaceuticals. In the review, we discuss the advantages and drawbacks of using CF-based methods for assessment of the culture conditions. Special attention is paid to the potential caveats and applicability of different variations of CF and PAM measurements for solving problems of microalgal biotechnology.

7.
Photochem Photobiol Sci ; 21(11): 2035-2051, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35918586

RESUMO

Biotechnology of microalgae holds promise for sustainable using of phosphorus, a finite non-renewable resource. Responses of the green microalga Lobosphaera sp. IPPAS C-2047 to elevated inorganic phosphate (Pi) concentrations were studied. Polyphosphate (PolyP) accumulation and ultrastructural rearrangements were followed in Lobosphaera using light and electron microscopy and linked to the responses of the photosynthetic apparatus probed with chlorophyll fluorescence. High tolerance of Lobosphaera to ≤ 50 g L-1 Pi was accompanied by a retention of photosynthetic activity and specific induction of non-photochemical quenching (NPQ up to 4; Fv/Fm around 0.7). Acclimation of the Lobosphaera to the high Pi was accompanied by expansion of the thylakoid lumen and accumulation of the carbon-rich compounds. The toxic effect of the extremely high (100 g L-1) Pi inhibited the growth by ca. 60%, induced a decline in photosynthetic activity and NPQ along with contraction of the lumen, destruction of the thylakoids, and depletion of starch reserves. The Lobosphaera retained viability at the Pi in the range of 25-100 g L-1 showing moderate an increase of intracellular P content (to 4.6% cell dry weight). During the initial high Pi exposure, the vacuolar PolyP biosynthesis in Lobosphaera was impaired but recovered upon acclimation. Synthesis of abundant non-vacuolar PolyP inclusions was likely a manifestation of the emergency acclimation of the cells converting the Pi excess to less metabolically active PolyP. We conclude that the remarkable Pi tolerance of Lobosphaera IPPAS C-2047 is determined by several mechanisms including rapid conversion of the exogenic Pi into metabolically safe PolyP, the acclamatory changes in the cell population structure. Possible involvement of NPQ in the high Pi resilience of the Lobosphaera is discussed.


Assuntos
Clorófitas , Microalgas , Fotossíntese , Tilacoides , Fosfatos , Clorofila
8.
Plants (Basel) ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684204

RESUMO

UV-A is the main ultraviolet component of natural (solar) radiation. Despite it, its effect on phototrophs is studied less than UV-B. Effects of UV-A on photosynthetic apparatus of three carotenoid-producing microalgae were elucidated. Photosynthetic activity was studied using chlorophyll fluorescence analysis. Cell extracts were evaluated by absorbance spectroscopy. On the one hand, there were some common features of three strains. In all cases the changes involved PSII primary photochemistry and antennae size. All strains accumulated UV-absorbing polar compounds. On the other hand, some responses were different. Upregulation of non-photochemical quenching was observed only in B. aggregatus BM5/15, whereas in other cases its level was low. H. rubicundus BM7/13 and Deasonia sp. NAMSU 934/2 accumulated secondary carotenoids, whereas B. aggregatus BM5/15 accumulated primary ones. Microscopic features of the cultures were also different. H. rubicundus BM7/13 and Deasonia sp. NAMSU 934/2 were represented mostly by solitaire cells or small cell clusters, lacking their green color; the cells of B. aggregatus BM5/15 formed aggregates from green cells. Cell aggregation could be considered as an additional UV-protecting mechanism. Finally, the strains differed by their viability. B. aggregatus BM5/15 was most resistant to UV-A, whereas massive cell death was observed in two other cultures.

9.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163759

RESUMO

Changes in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in Escherichia coli grown using a specially developed device aboard the International Space Station. The morphology and metabolism of E. coli grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation. The magnetic force caused visible clustering of non-sedimenting bacteria that formed matrix-containing aggregates under SF + MF and MF conditions. Cell auto-aggregation was accompanied by up-regulation of glyoxylate shunt enzymes and Vitamin B12 transporter BtuB. Under SF and SF + MF but not MF conditions nutrition and oxygen limitations were manifested by the down-regulation of glycolysis and TCA enzymes and the up-regulation of methylglyoxal bypass. Bacteria grown under combined SF + MF conditions demonstrated superior up-regulation of enzymes of the methylglyoxal bypass and down-regulation of glycolysis and TCA enzymes compared to SF conditions, suggesting that the magnetic force strengthened the effects of microgravity on the bacterial metabolism. This strengthening appeared to be due to magnetic force-dependent bacterial clustering within a small volume that reinforced the effects of the microgravity-driven absence of convectional flows.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Técnicas Bacteriológicas/instrumentação , Proteínas de Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/genética , Técnicas Bacteriológicas/métodos , Escherichia coli/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Glicólise , Glioxilatos/metabolismo , Fenômenos Magnéticos , Oxigênio/metabolismo , Aldeído Pirúvico/metabolismo , Voo Espacial , Ausência de Peso
10.
Biochemistry (Mosc) ; 87(12): 1699-1706, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717458

RESUMO

Non-photochemical quenching (NPQ) of excited chlorophyll states is essential for protecting the photosynthetic apparatus (PSA) from the excessive light-induced damage in all groups of oxygenic photosynthetic organisms. The key component of the NPQ mechanism in green algae and some other groups of algae and mosses is the LhcSR protein of the light harvesting complex (LHC) protein superfamily. In vascular plants, LhcSR is replaced by PsbS, another member of the LHC superfamily and a subunit of photosystem II (PSII). PsbS also performs the photoprotective function in mosses. For a long time, PsbS had been believed to be nonfunctional in green algae, although the corresponding gene was discovered in the genome of these organisms. The first evidence of the PsbS accumulation in the model green alga Chlamydomonas reinhardtii in response to the increase in irradiance was obtained only six years ago. However, the observed increase in the PsbS content was short-termed (on an hour-timescale). Here, we report a significant (more than three orders of magnitude) and prolonged (four days) upregulation of PsbS expression in response to the chilling-induced high-light stress followed by a less significant (~ tenfold) increase in the PsbS expression for nine days. This is the first evidence for the long-term upregulation of the PsbS expression in green alga (Chlorophyta) in response to stress. Our data indicate that the role of PsbS in the PSA of Chlorophyta is not limited to the first-line defense against stress, as it was previously assumed, but includes full-scale participation in the photoprotection of PSA from the environmental stress factors.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Luz , Microalgas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Plantas/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo
11.
Plants (Basel) ; 10(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34961072

RESUMO

The microalga Coelastrella rubescens dwells in habitats with excessive solar irradiation; consequently, it must accumulate diverse compounds to protect itself. We characterized the array of photoprotective compounds in C. rubescens. Toward this goal, we exposed the cells to high fluxes of visible light and UV-A and analyzed the ability of hydrophilic and hydrophobic extracts from the cells to absorb radiation. Potential light-screening compounds were profiled by thin layer chromatography and UPLC-MS. Coelastrella accumulated diverse carotenoids that absorbed visible light in the blue-green part of the spectrum and mycosporine-like amino acids (MAA) that absorbed the UV-A. It is the first report on the occurrence of MAA in Coelastrella. Two new MAA, named coelastrin A and coelastrin B, were identified. Transmission electron microscopy revealed the development of hydrophobic subcompartments under the high light and UV-A exposition. We also evaluate and discuss sporopollenin-like compounds in the cell wall and autophagy-like processes as the possible reason for the decrease in sunlight absorption by cells, in addition to inducible sunscreen accumulation. The results suggested that C. rubescens NAMSU R1 accumulates a broad range of valuable photoprotective compounds in response to UV-A and visible light irradiation, which indicates this strain as a potential producer for biotechnology.

12.
Biology (Basel) ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356498

RESUMO

Carotenoids astaxanthin and ß-carotene are widely used natural antioxidants. They are key components of functional food, cosmetics, drugs and animal feeding. They hold leader positions on the world carotenoid market. In current work, we characterize the new strain of the green microalga Bracteacoccus aggregatus BM5/15 and propose the method of its culturing in a bubble-column photobioreactor for simultaneous production of astaxanthin and ß-carotene. Culture was monitored by light microscopy and pigment kinetics. Fatty acid profile was evaluated by tandem gas-chromatography-mass spectrometry. Pigments were obtained by the classical two-stage scheme of autotrophic cultivation. At the first, vegetative, stage biomass accumulation occurred. Maximum specific growth rate and culture productivity at this stage were 100-200 mg∙L-1∙day-1, and 0.33 day-1, respectively. At the second, inductive, stage carotenoid synthesis was promoted. Maximal carotenoid fraction in the biomass was 2.2-2.4%. Based on chromatography data, astaxanthin and ß-carotene constituted 48 and 13% of total carotenoid mass, respectively. Possible pathways of astaxanthin synthesis are proposed based on carotenoid composition. Collectively, a new strain B. aggregatus BM5/15 is a potential biotechnological source of two natural antioxidants, astaxanthin and ß-carotene. The results give the rise for further works on optimization of B. aggregatus cultivation on an industrial scale.

13.
Photosynth Res ; 149(3): 289-301, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34215958

RESUMO

The measurements of chlorophyll fluorescence play an important role in studies of lichen physiology. Usually, for foliose lichens fluorescence kinetics is recorded from the upper thalline side often exhibiting green color reflecting the presence of photosynthetic pigments. The lower side of such lichens is grey, dark-brown or black. At the first time, we evaluated photosynthetic activity distribution by chlorophyll fluorescence analysis on both lower and upper thallus sides for the foliose lichen Nephroma arcticum. We have demonstrated that photosynthesis proceeds not only on the green-colored upper side, but also on the gray lower side of the curled growing edges of the thallus lobes. These sides were differed in terms of PSII photochemical quantum yield, activity of non-regulatory dissipation and non-photochemical quenching of excited chlorophyll states (NPQ). Upper side was characterized by higher maximal PSII efficiency, whereas the lower one of the curled edges was characterized by higher actual photochemical quantum yield during actinic light acclimation. NPQ was higher on the upper surface, whereas, on the lower side (of the curled edges) non-regulatory dissipation was predominant. In terms of photosynthetic activity measurements, these results show, that actinic and measuring light reached the layer of phycobiont despite its shielding by mycobiont hyphae. On the melanized lower side in the basal thalline zone attached to the substratum photosynthesis was not detected. Lower side demonstrated higher level of light scattering in the reflectance spectra. We believe that different photoprotective mechanisms against high light are crucial on the upper and lower sides: NPQ on the upper surface, and light scattering and shielding by mycobiont on the lower side. Possible biological role of photosynthesis on the lower side is discussed.


Assuntos
Ascomicetos/citologia , Ascomicetos/metabolismo , Clorofila/metabolismo , Líquens/citologia , Líquens/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Simbiose/fisiologia
14.
Biology (Basel) ; 10(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557358

RESUMO

Haematococcus lacustris is a natural source of a valuable ketocarotenoid astaxanthin. Under autotrophic growth conditions, it exists in the form of a community with bacteria. The close coexistence of these microorganisms raises two questions: how broad their diversity is and how they interact with the microalga. Despite the importance these issues, little is known about microorganisms existing in Haematococcus cultures. For the first time, we characterize the dynamic of the H. lacustris microbiome of the microbiome of Haematococcus (a changeover of the bacterial associated species as function of the time) cultivated autotrophically in a photobioreactor based on 16S rRNA metabarcoding data. We found that Proteobacteria and Bacteroidetes are predominant phyla in the community. The Caulobacter bacterium became abundant during astaxanthin accumulation. These data were supported by microscopy. We discuss possible roles and interactions of the community members. These findings are of potential significance for biotechnology. They provide an insight into possible bacterial contamination in algal biomass and reveal the presence of bacteria essential for the algal growth.

15.
J Fungi (Basel) ; 7(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440907

RESUMO

Fuel (especially kerosene) biodamage is a challenge for global industry. In aviation, where kerosene is a widely used type of fuel, its biodeterioration leads to significant damage. Six isolates of micromycetes from the TS-1 aviation kerosene samples were obtained. Their ability to grow on the fuel was studied, and the difference between biodegradation ability was shown. Micromycetes belonged to the Talaromyces, Penicillium, and Aspergillus genera. It was impossible to obtain bacterial isolates associated with their mycelium. However, 16S rRNA metabarcoding and microscopic observations revealed the presence of bacteria in the micromycete isolates. It seems to be that kerosene-degrading fungi were associated with uncultured bacteria. Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were abundant in the fungal cultures isolated from the TS-1 jet fuel samples. Most genera among these phyla are known as hydrocarbon degraders. Only bacteria-containing micromycete isolates were able to grow on the kerosene. Most likely, kerosene degradation mechanisms are based on synergism of bacteria and fungi.

16.
Microb Ecol ; 81(4): 932-940, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33247364

RESUMO

The internal surface of the animal gastrointestinal tract is covered by microbial biofilms. They play an important role in the development and functioning of the host organism and protect it against pathogens. Microbial communities of gastrointestinal biofilms are less elucidated than luminal microbiota. Therefore, the studies of biofilm formation by gastrointestinal microorganisms are a topical issue. For the first time, we report the formation of a biofilm in vitro by the strains of bioluminescent bacteria isolated from the intestines of marine fish. These bacteria exhibit co-aggregation and tend to attach to solid surfaces. The attachment of cells is accompanied by appearance of the pili. Then, we observed the formation of microcolonies and the production of extracellular polymer substances (EPSs) connecting bacterial cells into an integrated system. The presence of acidic polysaccharides is shown in the EPS when using the ruthenium red staining. Acidic polysaccharides in this matrix is a biochemical evidence of microbial biofilms. On the fibers of the polymer matrix, these bacteria form the "mushroom body"-type structures. Matured biofilms exhibit a specific three-dimensional architecture with pores and channels formed by cells and EPS. We also demonstrated the formation of a biofilm by binary culture of the luminous enterobacterium Kosakonia cowanii and a Gram-positive Macrococcus sp. The data obtained help to understand the role of these bacteria in the intestines of fish. They lead to a new study in the field of investigation of the intestinal microbiome of fish.


Assuntos
Biofilmes , Enterobacteriaceae , Animais , Bactérias/genética , Fímbrias Bacterianas
17.
Cells ; 9(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825634

RESUMO

To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)-taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1-2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions.


Assuntos
Transporte Biológico/fisiologia , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Fósforo/metabolismo , Expressão Gênica , Humanos
18.
Planta ; 252(3): 37, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778946

RESUMO

MAIN CONCLUSION: Haematococcus lacustris inhabits supralittoral rock ponds and forms, under natural conditions, biofilms including layered cyanobacterial and fermentative microbial mats. Dry mats, formed under extremely stressful conditions, contained only haematocysts. Under favorable growth conditions, modeled for dry biofilms in vitro, microalgal free-living stages were detected. Haematococcus lacustris is the microalga known for its high potential to survive under a wide range of unfavorable conditions, particularly in the supralittoral temporal rock ponds of the White Sea. Previously, we described microbial communities containing H. lacustris in this region. In many cases, they were organized into systems exhibiting complex three-dimensional structure similar to that of natural biofilms. In this study, for the first time, we clarify structural description and provide microscopic evidence that these communities of H. lacustris and bacteria are assembled into the true biofilms. There are (1) simple single layer biofilms on the surface of rocks and macrophytic algae, (2) floccules (or flocs) not attached to a surface, (3) as well as stratified (layered) biofilms, wet, and dehydrated in nature. Being involved into primary organic production, H. lacustris and cyanobacteria are located exclusively in the upper layers of stratified biofilms, where they are capable to absorb sufficient for photosynthesis amount of light. The presence of acidic polysaccharides in the extracellular matrix revealed by specific staining with ruthenium red in the H. lacustris-containing microbial communities is a biochemical evidence of biofilm formation. Meanwhile, the presence of bacterial L-form is an ultrastructural confirmation of that fact. Under favorable conditions, modeled in vitro, H. lacustris from the dry microbial mats moves to the free-living states represented by vegetative palmelloid cells and motile zoospores. Owing to the fact that inside biofilms cells of microorganisms exist under stable conditions, we consider the biofilm formation as an additional mechanism that contributes to the survival of H. lacustris in the supralittoral zone of the White Sea.


Assuntos
Biofilmes/crescimento & desenvolvimento , Clorofíceas/crescimento & desenvolvimento , Microbiota , Fotossíntese/fisiologia , Lagoas/microbiologia , Federação Russa
19.
Microb Ecol ; 79(4): 785-800, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31676992

RESUMO

Haematococcus lacustris is a biotechnologically important green unicellular alga producing widely used keta-karotenoid astaxanthin. In natural habitats, it exists in the form of algal-bacterial community, and under laboratory conditions, it is also accompanied by bacteria. The issue of the bacterial composition of industrial algal cultures is widely recognized as important. However, there is a dearth of information about bacterial composition of H. lacustris communities. In current work, we analyze the composition of natural H. lacustris communities from the White Sea coastal temporal rock ponds. For the first time, a 16S rRNA gene-based metagenome of natural H. lacustris bacterial communities has been generated. Main results of its analysis are as follow. Bacterial families Comamonadaceae, Cytophagaceae, Xanthomonadaceae, Acetobacteraceae, Rhodobacteraceae, and Rhodocyclaceae were observed in all studied H. lacustris natural communities. They also contained genera Hydrogenophaga and Cytophaga. Bacteria from the Hydrogenophaga genus were present in H. lacustris cultures after their isolation under the conditions of laboratory cultivation. Similar to other planktonic microalgae, H. lacustris forms a phycosphere around the cells. In this zone, bacteria attached to the algal surface. The contact between H. lacustris and bacteria is maintained even after sample drying. The study provides information about possible members of H. lacustris core microbiome, which can be presented in the industrial and laboratory cultures of the microalga.


Assuntos
Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Clorófitas/microbiologia , Microbiota , Água do Mar/microbiologia , Bactérias/classificação , Oceanos e Mares , Federação Russa
20.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31742595

RESUMO

Carotenogenic microalgae are unicellular photosynthetic organisms with the ability to accumulate carotenoids. Carotenoid accumulation is a protective reaction against environmental stress factors, such as bright light and extreme temperatures. It makes the survival of these microorganisms under harsh environmental conditions possible. The diversity of carotenogenic microalgae has been described in detail for Central Europe and North America, as well as for tropical and subtropical latitudes with relatively favorable environments. However, data about these microorganisms in polar and subpolar latitudes are scarce and restricted to few reports. We isolated several strains of carotenogenic microalgae from the coastal zone of the White Sea, where they were abundant. The obtained microalgae related to four species of Chlorophytes: Haematococcus lacustris, H. rubicundus, Coelastrella aeroterrestrica and Bracteacoccus aggregatus. The last three species have been reported for polar latitudes for the first time. Most likely, carotenogenic algae in the White Sea coast are abundant due to their high physiological and metabolic plasticity, which is essential for surviving under adverse conditions of the northern regions. Pigment composition of the strains is provided. Their predominant carotenoids were astaxanthin and ß-carotene. Further, the obtained strains may be considered as potential producers of natural pigments for biotechnology.


Assuntos
Biodiversidade , Carotenoides/metabolismo , Clorofíceas/metabolismo , Microalgas/metabolismo , Regiões Árticas , Carotenoides/química , Clorofíceas/classificação , Clima Frio , Microalgas/classificação , Oceanos e Mares , Fotossíntese , Xantofilas , beta Caroteno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...