Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 24(6): 065102, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22231780

RESUMO

The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions.

2.
Phys Rev Lett ; 100(17): 178304, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18518346

RESUMO

We determine the structure of charge-stabilized colloidal suspensions at low ionic strength over an extended range of particle volume fractions using a combination of light and small angle neutron scattering experiments. The variation of the structure factor with concentration is analyzed within a one-component model of a colloidal suspension. We show that the observed structural behavior corresponds to a nonmonotonic density dependence of the colloid effective charge and the mean interparticle interaction energy. Our findings are corroborated by similar observations from primitive model computer simulations of salt-free colloidal suspensions.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(5 Pt 1): 051408, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17279910

RESUMO

We study macroion correlation effects on the thermodynamics of highly charged colloidal suspensions using a mean-field theory and primitive model computer simulations. We suggest a simple way to include the macroion correlations into the mean-field theory as an extension of the renormalized jellium model of Trizac and Levin [Phys. Rev. E 69, 031403 (2004)]. The effective screening parameters extracted from our mean-field approach are then used in a one-component model with macroions interacting via a Yukawa-like potential to predict macroion distributions. We find that inclusion of macroion correlations leads to a weaker screening and hence smaller effective macroion charge and lower osmotic pressure of the colloidal dispersion as compared to other mean-field models. This result is supported by comparison to primitive model simulations and experiments for charged macroions in the low-salt regime, where the macroion correlations are expected to be significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA