Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Science ; 291(5506): 1031-6, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11161214

RESUMO

The Indian Ocean Experiment (INDOEX) was an international, multiplatform field campaign to measure long-range transport of air pollution from South and Southeast Asia toward the Indian Ocean during the dry monsoon season in January to March 1999. Surprisingly high pollution levels were observed over the entire northern Indian Ocean toward the Intertropical Convergence Zone at about 6 degrees S. We show that agricultural burning and especially biofuel use enhance carbon monoxide concentrations. Fossil fuel combustion and biomass burning cause a high aerosol loading. The growing pollution in this region gives rise to extensive air quality degradation with local, regional, and global implications, including a reduction of the oxidizing power of the atmosphere.


Assuntos
Poluição do Ar , Aerossóis , Agricultura , Ásia , Sudeste Asiático , Atmosfera , Biomassa , Carbono , Monóxido de Carbono , Cinza de Carvão , Combustíveis Fósseis , Resíduos Industriais , Óxidos de Nitrogênio , Oceanos e Mares , Ozônio , Material Particulado , Estações do Ano
2.
Science ; 267(5200): 1002-5, 1995 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-17811440

RESUMO

Surface waters along a cruise track in the East Pacific Ocean were undersaturated in methyl bromide (CH(3)Br) in most areas except for coastal and upwelling regions, with saturation anomalies ranging from + 100 percent in coastal waters to -50 percent in open ocean areas, representing a regionally weighted mean of -16 (-13 to -20) percent. The partial lifetime of atmospheric CH(3)Br with respect to calculated oceanic degradation along this cruise track is 3.0 (2.9 to 3.6) years. The global, mean dry mole fraction of CH3Br in the atmosphere was 9.8 +/- 0.6 parts per trillion, with an interhemispheric ratio of 1.31 +/- 0.08. These data indicate that approximately 8 percent (0.2 parts per trillion) of the observed interhemispheric difference in atmospheric CH3Br could be attributed to an uneven global distribution of oceanic sources and sinks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...