Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38853496

RESUMO

BACKGROUND: The upsurge of antimicrobial resistance demands innovative strategies to fight bacterial infections. With traditional antibiotics becoming less effective, anti-virulence agents or pathoblockers, arise as an alternative approach that seeks to disarm pathogens without affecting their viability, thereby reducing selective pressure for the emergence of resistance mechanisms. OBJECTIVES: To elucidate the mechanism of action of compound N'-(thiophen-2-ylmethylene)benzohydrazide (A16B1), a potent synthetic hydrazone inhibitor against the Salmonella PhoP/PhoQ system, essential for virulence. MATERIALS AND METHODS: The measurement of the activity of PhoP/PhoQ-dependent and -independent reporter genes was used to evaluate the specificity of A16B1 to the PhoP regulon. Autokinase activity assays with either the native or truncated versions of PhoQ were used to dissect the A16B1 mechanism of action. The effect of A16B1 on Salmonella intramacrophage replication was assessed using the gentamicin protection assay. The checkerboard assay approach was used to analyse potentiation effects of colistin with the hydrazone. The Galleria mellonella infection model was chosen to evaluate A16B1 as an in vivo therapy against Salmonella. RESULTS: A16B1 repressed the Salmonella PhoP/PhoQ system activity, specifically targeting PhoQ within the second transmembrane region. A16B1 demonstrates synergy with the antimicrobial peptide colistin, reduces the intramacrophage proliferation of Salmonella without being cytotoxic and enhances the survival of G. mellonella larvae systemically infected with Salmonella. CONCLUSIONS: A16B1 selectively inhibits the activity of the Salmonella PhoP/PhoQ system through a novel inhibitory mechanism, representing a promising synthetic hydrazone compound with the potential to function as a Salmonella pathoblocker. This offers innovative prospects for combating Salmonella infections while mitigating the risk of antimicrobial resistance emergence.

2.
Sci Rep ; 14(1): 5148, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429351

RESUMO

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Assuntos
Mariposas , Infecções por Salmonella , Animais , Colistina/farmacologia , Colistina/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella/tratamento farmacológico , Testes de Sensibilidade Microbiana
3.
J Agric Food Chem ; 70(22): 6755-6763, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35607919

RESUMO

Salmonella spp. are among the leading bacterial causes of foodborne infections. The PhoP/PhoQ two-component regulatory system serves as a master virulence regulator in Salmonella. Although PhoP/PhoQ represents an ideal target for disarming Salmonella virulence, it has very few inhibitors reported so far. We describe a novel platform by which an inhibitor was selected out of around 185 compounds directly from reaction media containing thiosemicarbazones and mono-, di-, and trihydrazones. To achieve this, tandem library preparation, thin-layer chromatography (TLC) bioautography, and effect-directed deconvolution were applied. We illustrate the potential of this effect-directed synthesis for the identification of new useful bioactive compounds for the food field.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia em Camada Fina , Regulação Bacteriana da Expressão Gênica , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...