Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 32(2): 223-233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708416

RESUMO

Chironomus sancticaroli is a tropical species, easy to grow and to maintain in laboratory cultures. It has a fast reproduction cycle, under adequate conditions, around 30 days, allowing it to have many generations per year, an important criterion for selecting a test organism in ecotoxicology. Its life stages include: eggs, four larval instars (one planktonic and three benthic), pupa and adult (midges) This study aimed to: (1) review the methods for C. sancticaroli cultivation and its use in ecotoxicological tests, (2) establish a laboratory culture of C. sancticaroli, presenting the difficulties and discussing the ways to overcome them. Early 4th instar larvae was the most used in acute studies, while the 1st instar larvae (early 1st instar) was the most used in chronic studies; 96 h and 28 days were the most frequent durations in acute and chronic studies, respectively. The most common endpoints evaluated were organisms' survival and development, and most of the ecotoxicological studies using C. sancticaroli were performed in laboratory. Most of the tested contaminants were pesticides and these had the most adverse effects on organisms. Most mesocosms with environmental contaminated samples did not show adverse effects on C. sancticaroli. Chronic and field studies as well as those testing the effects of the mixture contaminants on C. sancticaroli were still deficient. Keeping the laboratory environment and equipment effectively sanitized was important as well as maintaining stabilized conditions of temperature, photoperiod, physical, chemical and biological water quality in cultures.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Ecotoxicologia , Larva , Pupa
2.
Ecotoxicology ; 31(1): 161-167, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773559

RESUMO

Caffeine is a contaminant frequently detected in water bodies. Growth trends in both human population and caffeine consumption per capita are expected to exacerbate the occurrence of caffeine in freshwaters. Yet the effects of caffeine on native fish fauna are poorly understood. We exposed larvae of an endemic Neotropical catfish (Rhamdia quelen) to a range of caffeine concentrations for 30 days. We found that larvae exposed to the highest concentration (16 mg L-1) showed skeletal deformations and reduced growth. We further compiled measured environmental concentrations of caffeine in surface freshwater globally and performed a risk assessment. Our analysis points to a low risk to R. quelen and equally sensitive fish species in ~90% of the freshwater ecosystems considered in our analysis. The risk quotient is higher in freshwater ecosystems of South and Central America, where R. quelen is endemic. Although the ecotoxicological risk is currently low in most places, increased caffeine consumption, exacerbated by the lack of sanitation, is expected to increase caffeine concentrations in many parts of the world, posing a threat of sublethal morphological effects to local fish species.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Cafeína/toxicidade , Ecossistema , Água Doce , Humanos , Poluentes Químicos da Água/toxicidade
3.
Aquat Toxicol ; 239: 105955, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34500378

RESUMO

Oligochaetes feed on bulk sediment and penetrate the sediment through the construction of burrows, making them especially vulnerable to sediment metal contamination. However, the few oligochaete species that have been tested to date are almost exclusively temperate test species. Although the warmwater adapted species Branchiura sowerbyi has been indicated as a promising candidate for tropical sediment toxicity testing, few (especially chronic) studies have been conducted so far to confirm this. Therefore, the aim of the present study was to evaluate the bioaccumulation and chronic 28d lethal and sublethal toxicity of arsenic (As) and zinc (Zn) to both the warmwater-adapted B. sowerbyi and the coldwater-adapted oligochaete Tubifex tubifex for comparison. Arsenic was more toxic to both oligochaete species than Zn. Inter- and intra-species variability in toxicity values of the two test species and other benthic invertebrates was within an order of magnitude. However, B. sowerbyi was the most sensitive species to As even for sediment concentration (EC50: 36.6 ± 2.1 µg/g and 147.1 ± 21.7 µg/g, for B. sowerbyi and T. tubifex, respectively) and for tissue concentration (ER50: 9.2 ± 0.9 µg/g and 887.0 ± 35.0 µg/g, for B. sowerbyi and T. tubifex, respectively). Finally, the Tissue Residue-effects Approach (TRA) using Effective Tissue Residues appears to be a promising way forward in advancing in this since it considers internal body concentrations.


Assuntos
Arsênio , Oligoquetos , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Bioacumulação , Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...