Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 172(1): 21-33, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20688167

RESUMO

We describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples. The platform is centered on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems. The 6X-His tag allows for similar purification procedures for most targets and implementation of high-throughput (HTP) parallel methods. In most cases, the 6X-His-tagged proteins are sufficiently purified (>97% homogeneity) using a HTP two-step purification protocol for most structural studies. Using this platform, the open reading frames of over 16,000 different targeted proteins (or domains) have been cloned as>26,000 constructs. Over the past 10 years, more than 16,000 of these expressed protein, and more than 4400 proteins (or domains) have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html). Using these samples, the NESG has deposited more than 900 new protein structures to the Protein Data Bank (PDB). The methods described here are effective in producing eukaryotic and prokaryotic protein samples in E. coli. This paper summarizes some of the updates made to the protein production pipeline in the last 5 years, corresponding to phase 2 of the NIGMS Protein Structure Initiative (PSI-2) project. The NESG Protein Production Platform is suitable for implementation in a large individual laboratory or by a small group of collaborating investigators. These advanced automated and/or parallel cloning, expression, purification, and biophysical screening technologies are of broad value to the structural biology, functional proteomics, and structural genomics communities.


Assuntos
Genômica/métodos , Proteínas/metabolismo , Proteômica/métodos , Clonagem Molecular , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Proteins ; 62(4): 843-51, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16395675

RESUMO

Recent technological advances and experimental techniques have contributed to an increasing number and size of NMR datasets. In order to scale up productivity, laboratory information management systems for handling these extensive data need to be designed and implemented. The SPINS (Standardized ProteIn Nmr Storage) Laboratory Information Management System (LIMS) addresses these needs by providing an interface for archival of complete protein NMR structure determinations, together with functionality for depositing these data to the public BioMagResBank (BMRB). The software tracks intermediate files during each step of an NMR structure-determination process, including: data collection, data processing, resonance assignments, resonance assignment validation, structure calculation, and structure validation. The underlying SPINS data dictionary allows for the integration of various third party NMR data processing and analysis software, enabling users to launch programs they are accustomed to using for each step of the structure determination process directly out of the SPINS user interface.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Gráficos por Computador , Bases de Dados de Proteínas , Conformação Proteica , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...