Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 24(10): 2683-2699, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38651213

RESUMO

Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (µDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on µDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal µDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Dispositivos Lab-On-A-Chip , Humanos , Animais , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
2.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585935

RESUMO

Present cancer disease models - typically based on cell cultures and animal models that lack the human tumor microenvironment (TME) - are extremely poor predictors of human disease outcomes. Microscale cancer models that combine the micromanipulation of tissues and fluids offer the exciting possibility of miniaturizing the drug testing workflow, enabling inexpensive, more efficient tests of high clinical biomimicry that maximize the use of scarce human tissue and minimize animal testing. Critically, these microscale models allow for precisely addressing the impact of the structural features of the heterogeneous TME to properly target and understand the contributions of these unique zones to therapeutic response. We have recently developed a precision slicing method that yields large numbers of cuboidal micro-tissues ("cuboids", ∼ (400 µm) 3 ) from a single tumor biopsy. Here we evaluate cuboids from syngeneic mouse tumor models and human tumors, which contain native immune cells, as models for drug and immunotherapy evaluation. We characterize relevant TME parameters, such as their cellular architecture (immune cells and vasculature), cytokine secretion, proteomics profiles, and their response to drug panels in multi-well arrays. Despite the cutting procedure and the time spent in culture (up to 7 days), the cuboids display strong functional responses such as cytokine and drug responses. Overall, our results suggest that cuboids make an excellent model for applications that require the TME, such as immunotherapy drug evaluations, including for clinical trials and personalized oncology approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...