Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(30): e2302146, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653608

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by debilitating fatigue that profoundly impacts patients' lives. Diagnosis of ME/CFS remains challenging, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis, and many never receiving a clear diagnosis at all. In this study, a single-cell Raman platform and artificial intelligence are utilized to analyze blood cells from 98 human subjects, including 61 ME/CFS patients of varying disease severity and 37 healthy and disease controls. These results demonstrate that Raman profiles of blood cells can distinguish between healthy individuals, disease controls, and ME/CFS patients with high accuracy (91%), and can further differentiate between mild, moderate, and severe ME/CFS patients (84%). Additionally, specific Raman peaks that correlate with ME/CFS phenotypes and have the potential to provide insights into biological changes and support the development of new therapeutics are identified. This study presents a promising approach for aiding in the diagnosis and management of ME/CFS and can be extended to other unexplained chronic diseases such as long COVID and post-treatment Lyme disease syndrome, which share many of the same symptoms as ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/genética , Leucócitos Mononucleares , Inteligência Artificial , Síndrome de COVID-19 Pós-Aguda , Testes Diagnósticos de Rotina
2.
Front Med (Lausanne) ; 9: 842991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433768

RESUMO

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease characterized by long-lasting persistent debilitating widespread fatigue and post-exertional malaise, remains diagnosed by clinical criteria. Our group and others have identified differentially expressed miRNA profiles in the blood of patients. However, their diagnostic power individually or in combinations seems limited. A Partial Least Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV) miRNAs, and six EV features, selected an optimal number of five components, and a subset of 32 regressors showing statistically significant discriminant power. The presence of four EV-features (size and z-values of EVs prepared with or without proteinase K treatment) among the 32 regressors, suggested that blood vesicles carry relevant disease information. To further explore the features of ME/CFS EVs, we subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067), Raman data served to refine the number of PBMC miRNAs from our previous model still ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate model performance in extended cohorts of patients, to identify the precise ME/CFS EV components detected by Raman and to reveal their functional significance in the disease are warranted.

3.
Front Neurol ; 11: 1023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013673

RESUMO

Age-related neuronal dysfunction can be overcome by circulating factors present in young blood. Growth differentiation factor-11 (GDF-11), a systemic factor that declines with age, can reverse age-related dysfunction in brain, heart and skeletal muscle. Given that age increases susceptibility to stroke, we hypothesized that GDF-11 may be directly protective to neurons following ischemia. Primary cortical neurons were isolated from E18 Wistar rat embryos and cultured for 7-10 days. Neurons were deprived of oxygen and glucose (OGD) to simulate ischemia. Neuronal death was assessed by lactate dehydrogenase, propidium iodide or CellTox™ green cytotoxicity assays. 40 ng/mL GDF-11 administration during 2 h OGD significantly increased neuronal death following 24 h recovery. However, GDF-11 pre-treatment did not affect neuronal death during 2 h OGD. GDF-11 treatment during the 24 h recovery period after 2 h OGD also did not alter death. Real-time monitoring for 24 h revealed that by 2 h OGD, GDF-11 treatment had increased neuronal death which remained raised at 24 h. Co-treatment of 1 µM SB431542 (ALK4/5/7 receptor inhibitor) with GDF-11 prevented GDF-11 neurotoxicity after 2 h OGD and 24 h OGD. Transforming growth factor beta (TGFß) did not increase neuronal death to the same extent as GDF-11 following OGD. GDF-11 neurotoxicity was also exhibited following neuronal exposure to hydrogen peroxide. These results reveal for the first time that GDF-11 is neurotoxic to primary neurons in the acute phase of simulated stroke through primarily ALK4 receptor signaling.

4.
Sci Rep ; 9(1): 11464, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391529

RESUMO

The mitochondrial energy score (MES) protocol, developed by the Myhill group, is marketed as a diagnostic test for chronic fatigue syndrome/Myalgic Encephalomyelitis (CFS/ME). This study assessed the reliability and reproducibility of the test, currently provided by private clinics, to assess its potential to be developed as an NHS accredited laboratory test. We replicated the MES protocol using neutrophils and peripheral blood mononuclear cells (PBMCs) from CFS/ME patients (10) and healthy controls (13). The protocol was then repeated in PBMCs and neutrophils from healthy controls to investigate the effect of delayed sample processing time used by the Myhill group. Experiments using the established protocol showed no differences between CFS/ME patients and healthy controls in any of the components of the MES (p ≥ 0.059). Delaying blood sample processing by 24 hours (well within the 72 hour time frame quoted by the Myhill group) significantly altered many of the parameters used to calculate the MES in both neutrophils and PBMCs. The MES test does not have the reliability and reproducibility required of a diagnostic test and therefore should not currently be offered as a diagnostic test for CFS/ME. The differences observed by the Myhill group may be down to differences in sample processing time between cohorts.


Assuntos
Síndrome de Fadiga Crônica/diagnóstico , Testes Hematológicos/métodos , Leucócitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Adulto , Estudos de Casos e Controles , Metabolismo Energético , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neutrófilos/citologia , Reprodutibilidade dos Testes , Manejo de Espécimes/métodos , Adulto Jovem
5.
Front Cell Dev Biol ; 6: 103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283778

RESUMO

Background: Autosomal dominant optic atrophy (ADOA) is usually caused by mutations in the essential gene, OPA1. This encodes a ubiquitous protein involved in mitochondrial dynamics, hence tissue specificity is not understood. Dysregulated mitophagy (mitochondria recycling) is implicated in ADOA, being increased in OPA1 patient fibroblasts. Furthermore, autophagy may be increased in retinal ganglion cells (RGCs) of the OPA1Q285STOP mouse model. Aims: We developed a mouse model for studying mitochondrial dynamics in order to investigate mitophagy in ADOA. Methods: We crossed the OPA1Q285STOP mouse with our RedMIT/GFP-LC3 mouse, harboring red fluorescent mitochondria and green fluorescent autophagosomes. Colocalization between mitochondria and autophagosomes, the hallmark of mitophagy, was quantified in fluorescently labeled organelles in primary cell cultures, using two high throughput imaging methods Imagestream (Amnis) and IN Cell Analyzer 1000 (GE Healthcare Life Sciences). We studied colocalization between mitochondria and autophagosomes in fixed sections using confocal microscopy. Results: We validated our imaging methods for RedMIT/GFP-LC3 mouse cells, showing that colocalization of red fluorescent mitochondria and green fluorescent autophagosomes is a useful indicator of mitophagy. We showed that colocalization increases when lysosomal processing is impaired. Further, colocalization of mitochondrial fragments and autophagosomes is increased in cultures from the OPA1Q285STOP/RedMIT/GFP-LC3 mice compared to RedMIT/GFP-LC3 control mouse cells that were wild type for OPA1. This was apparent in both mouse embryonic fibroblasts (MEFs) using IN Cell 1000 and in splenocytes using ImageStream imaging flow cytometer (Amnis). We confirmed that this represents increased mitophagic flux using lysosomal inhibitors. We also used microscopy to investigate the level of mitophagy in the retina from the OPA1Q285STOP/RedMIT/GFP-LC3 mice and the RedMIT/GFP-LC3 control mice. However, the expression levels of fluorescent proteins and the image signal-to-background ratios precluded the detection of colocalization so we were unable to show any difference in colocalization between these mice. Conclusions: We show that colocalization of fluorescent mitochondria and autophagosomes in cell cultures, but not fixed tissues from the RedMIT/GFP-LC3, can be used to detect mitophagy. We used this model to confirm that mitophagy is increased in a mouse model of ADOA. It will be useful for cell based studies of diseases caused by impaired mitochondrial dynamics.

6.
Int J Oncol ; 50(3): 773-786, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112374

RESUMO

Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Micotoxinas/uso terapêutico , Sesterterpenos/uso terapêutico , Cálcio/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
7.
Wellcome Open Res ; 2: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31754635

RESUMO

Background: Mitochondrial diabetes is primarily caused by ß-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent ß-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting ß-cell mitochondrial function.

8.
Biochem Soc Trans ; 44(4): 1091-100, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528757

RESUMO

One in 400 people has a maternally inherited mutation in mtDNA potentially causing incurable disease. In so-called heteroplasmic disease, mutant and normal mtDNA co-exist in the cells of carrier women. Disease severity depends on the proportion of inherited abnormal mtDNA molecules. Families who have had a child die of severe, maternally inherited mtDNA disease need reliable information on the risk of recurrence in future pregnancies. However, prenatal diagnosis and even estimates of risk are fraught with uncertainty because of the complex and stochastic dynamics of heteroplasmy. These complications include an mtDNA bottleneck, whereby hard-to-predict fluctuations in the proportions of mutant and normal mtDNA may arise between generations. In 'mitochondrial replacement therapy' (MRT), damaged mitochondria are replaced with healthy ones in early human development, using nuclear transfer. We are developing non-invasive alternatives, notably activating autophagy, a cellular quality control mechanism, in which damaged cellular components are engulfed by autophagosomes. This approach could be used in combination with MRT or with the regular management, pre-implantation genetic diagnosis (PGD). Mathematical theory, supported by recent experiments, suggests that this strategy may be fruitful in controlling heteroplasmy. Using mice that are transgenic for fluorescent LC3 (the hallmark of autophagy) we quantified autophagosomes in cleavage stage embryos. We confirmed that the autophagosome count peaks in four-cell embryos and this correlates with a drop in the mtDNA content of the whole embryo. This suggests removal by mitophagy (mitochondria-specific autophagy). We suggest that modulating heteroplasmy by activating mitophagy may be a useful complement to mitochondrial replacement therapy.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação , Animais , Autofagia/genética , Criança , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Heterozigoto , Humanos , Masculino , Herança Materna/genética , Camundongos Endogâmicos C57BL , Doenças Mitocondriais/prevenção & controle , Doenças Mitocondriais/terapia , Terapia de Substituição Mitocondrial/métodos , Mitofagia/genética , Modelos Genéticos
10.
Pharmacol Res ; 100: 24-35, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26196248

RESUMO

Mitophagy is a cellular mechanism for the recycling of mitochondrial fragments. This process is able to improve mitochondrial DNA (mtDNA) quality in heteroplasmic mtDNA disease, in which mutant mtDNA co-exists with normal mtDNA. In disorders where the load of mutant mtDNA determines disease severity it is likely to be an important determinant of disease progression. Measuring mitophagy is technically demanding. We used pharmacological modulators of autophagy to validate two techniques for quantifying mitophagy. First we used the IN Cell 1000 analyzer to quantify mitochondrial co-localisation with LC3-II positive autophagosomes. Unlike conventional fluorescence and electron microscopy, this high-throughput system is sufficiently sensitive to detect transient low frequency autophagosomes. Secondly, because mitophagy preferentially removes pathogenic heteroplasmic mtDNA mutants, we developed a heteroplasmy assay based on loss of m.3243A>G mtDNA, during culture conditions requiring oxidative metabolism ("energetic stress"). The effects of the pharmacological modulators on these two measures were consistent, confirming that the high throughput imaging output (autophagosomes co-localising with mitochondria) reflects mitochondrial quality control. To further validate these methods, we performed a more detailed study using metformin, the most commonly prescribed antidiabetic drug that is still sometimes used in Maternally Inherited Diabetes and Deafness (MIDD). This confirmed our initial findings and revealed that metformin inhibits mitophagy at clinically relevant concentrations, suggesting that it may have novel therapeutic uses.


Assuntos
Autofagia/fisiologia , Bioensaio/métodos , DNA Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Humanos , Metformina/farmacologia , Microscopia de Fluorescência/métodos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Mitofagia/fisiologia , Adulto Jovem
11.
Toxicology ; 331: 47-56, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25745980

RESUMO

Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity.


Assuntos
Anticonvulsivantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Fosforilação Oxidativa/efeitos dos fármacos , Ácido Valproico/toxicidade , Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...