Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 7(3)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34449597

RESUMO

Hydrogels prepared from polymers have been proposed for tissue regeneration and the treatment of bruise wounds. In this research work, we synthesized a Raphanus sativus L.-based wound-healing hydrogel with recognized antimicrobial activity for the healing of cutaneous lesions, drawing on its healing potential. A structural analysis was performed by Fourier transform infrared spectroscopy, confirming the interaction between sodium alginate and Raphanus sativus L. The surface morphology was studied by scanning electron microscopy. A swelling test showed that the T-1 hydrogel capability of absorption of the solution was superior compared to other synthesized samples. It was evident that the swelling tendency decreased as the Raphanus sativus L. seed extract concentration was reduced. In a thermogravimetric analysis, T-1 shows high thermal stability over other prepared hydrogel samples, enjoying a high content of seed extract compared with all samples. The prepared hydrogels were placed on the chick chorioallantoic membrane of fertilized chick eggs, and their healing capability was examined. All seed extracts containing hydrogels showed clear curative performance as compared to the control hydrogel, whereas their healing magnitude lessened as the extract ratio decreased. It was concluded from the results of the current study that the Raphanus sativus L. plant has wound-healing characteristics.

2.
Molecules ; 26(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072397

RESUMO

The formation of new scaffolds to enhance healing magnitude is necessarily required in biomedical applications. Granulation tissue formation is a crucial stage of wound healing in which granulation tissue grows on the surface of a wound by the formation of connective tissue and blood vessels. In the present study, porous hydrogels were synthesized using chitosan incorporating latex of the Calotropis procera plant by using a freeze-thaw cycle to stimulate the formation of granulation tissue and angiogenesis in wound healing applications. Structural analysis through Fourier transform infrared (FTIR) spectroscopy confirmed the interaction between chitosan and Calotropis procera. Latex extract containing hydrogel showed slightly higher absorption than the control during water absorption analysis. Thermogravimetric analysis showed high thermal stability of the 60:40 combination of chitosan (CS) and Calotropis procera as compared to all other treatments and controls. A fabricated scaffold application on a chick chorioallantoic membrane (CAM) showed that all hydrogels containing latex extract resulted in a significant formation of blood vessels and regeneration of cells. Overall, the formation of connective tissues and blood capillaries and healing magnitude decreased in ascending order of concentration of extract.


Assuntos
Calotropis/metabolismo , Quitosana/química , Hidrogéis/química , Neovascularização Fisiológica , Cicatrização , Animais , Materiais Biocompatíveis , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Congelamento , Látex/química , Teste de Materiais , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Polímeros/química , Regeneração , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...