Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(48): eabj5827, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34818037

RESUMO

Structures in living systems cross-regulate via exchange of molecular information to assemble or disassemble on demand and in a coordinated, signal-triggered fashion. DNA strand displacement (DSD) reaction networks allow rational design of signaling and feedback loops, but combining DSD with structural nanotechnology to achieve self-reconfiguring hierarchical system states is still in its infancy. We introduce modular DSD networks with increasing amounts of regulatory functions, such as negative feedback, signal amplification, and signal thresholding, to cross-regulate the transient polymerization/depolymerization of two self-sorting DNA origami nanofibrils and nanotubes. This is achieved by concatenation of the DSD network with molecular information relays embedded on the origami tips. The two origamis exchange information and display programmable transient states observable by TEM and fluorescence spectroscopy. The programmability on the DSD and the origami level is a viable starting point toward more complex lifelike behavior of colloidal multicomponent systems featuring advanced signal processing functions.

2.
Adv Sci (Weinh) ; 8(5): 2003740, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717858

RESUMO

There exists a critical need in biomedical molecular imaging and diagnostics for molecular sensors that report on slight changes to their local microenvironment with high spatial fidelity. Herein, a modular fluorescent probe, termed StyPy, is rationally designed which features i) an enormous and tunable Stokes shift based on twisted intramolecular charge transfer (TICT) processes with no overlap, a broad emission in the far-red/near-infrared (NIR) region of light and extraordinary quantum yields of fluorescence, ii) a modular applicability via facile para-fluoro-thiol reaction (PFTR), and iii) a polarity- and viscosity-dependent emission. This renders StyPy as a particularly promising molecular sensor. Based on the thorough characterization on the molecular level, StyPy reports on the viscosity change in all-DNA microspheres and indicates the hydrophilic and hydrophobic compartments of hybrid DNA-based mesostructures consisting of latex beads embedded in DNA microspheres. Moreover, the enormous Stokes shift of StyPy enables one to detect multiple fluorophores, while using only a single laser line for excitation in DNA protocells. The authors anticipate that the presented results for multiplexing information are of direct importance for advanced imaging in complex soft matter and biological systems.

3.
Small ; 17(5): e2005668, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448120

RESUMO

Multivalent interaction is an important principle for self-assembly and has been widely used to assemble colloids. However, surface binding partners are statistically distributed, which falls short of the interaction possibilities arising from geometrically controlled multivalency patterns as seen in viruses. Herein, the precision provided by 3D DNA origami is exploited to introduce multivalency pattern recognition via designing geometrically precise interaction patterns at patches of patchy nanocylinders. This gives rise to self-sorting of colloidal assemblies despite having the same type and number of supramolecular binding motifs-solely based on the pattern located on a 20 × 20 nm2 cross-section. The degree of sorting can be modulated by the geometric overlap of patterns and homo; mixed and alternating supracolloidal polymerizations are demonstrated. Multivalency patterns are able to provide an additional information layer to organize soft matter, important towards engineering of biological responses and functional materials design.


Assuntos
Coloides , DNA , Polimerização
4.
Angew Chem Int Ed Engl ; 60(13): 7117-7125, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33340387

RESUMO

Microgels are soft colloids that show responsive behavior and are easy to functionalize for applications. They are considered key components for future smart colloidal material systems. However, so far microgel systems have almost exclusively been studied in classical responsive switching settings using external triggers, while internally organized, autonomous control mechanisms as found in supramolecular chemistry and DNA nanotechnology relying on fuel-driven out-of-equilibrium concepts have not been implemented into microgel systems. Here, we introduce chemically fueled transient volume phase transitions (VPTs) for poly(methacrylic acid) (PMAA) microgels, where the collapsed hydrophobic state can be programmed using the fuel concentration in a cyclic reaction network. We discuss details of the system behavior as a function of pH and fuel amount, unravel kinetically trapped regions and showcase transient encapsulation and time-programmed release as a first application.

5.
Angew Chem Int Ed Engl ; 59(36): 15474-15479, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32301556

RESUMO

Nanostructures derived from amphiphilic DNA-polymer conjugates have emerged prominently due to their rich self-assembly behavior; however, their synthesis is traditionally challenging. Here, we report a novel platform technology towards DNA-polymer nanostructures of various shapes by leveraging polymerization-induced self-assembly (PISA) for polymerization from single-stranded DNA (ssDNA). A "grafting from" protocol for thermal RAFT polymerization from ssDNA under ambient conditions was developed and utilized for the synthesis of functional DNA-polymer conjugates and DNA-diblock conjugates derived from acrylates and acrylamides. Using this method, PISA was applied to manufacture isotropic and anisotropic DNA-polymer nanostructures by varying the chain length of the polymer block. The resulting nanostructures were further functionalized by hybridization with a dye-labelled complementary ssDNA, thus establishing PISA as a powerful route towards intrinsically functional DNA-polymer nanostructures.

6.
Angew Chem Int Ed Engl ; 59(14): 5515-5520, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31814217

RESUMO

We introduce divalent 3D DNA origami cuboids as truly monodisperse colloids and harness their ability for precision functionalization with defined patches and defined numbers of supramolecular binding motifs. We demonstrate that even adamantane/ß-cyclodextrin host/guest inclusion complexes of moderate association strength can induce efficient supracolloidal fibrillization at high dilution of the 3D DNA Origami as a result of cooperative multivalency. We show details on the assembly of Janus and non-Janus 3D DNA origami into supracolloidal homo- and heterofibrils with respect to multivalency effects, electrostatic screening, and stoichiometry. We believe that the merger of 3D DNA origami with colloidal self-assembly and supramolecular motifs provides new synergies at the interface of these disciplines to better understand multivalency effects, to promote structural complexity, and add non-DNA assembling and switching mechanisms to DNA nanoscience.

7.
Nat Nanotechnol ; 13(8): 730-738, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29941888

RESUMO

DNA has traditionally been used for the programmable design of nanostructures by exploiting its sequence-defined supramolecular recognition. However, control on larger length scales or even hierarchical materials that translate to the macroscale remain difficult to construct. Here, we show that the polymer character of single-stranded DNA (ssDNA) can be activated via a nucleobase-specific lower critical solution temperature, which provides a unique access to mesoscale structuring mechanisms on larger length scales. We integrate both effects into ssDNA multiblock copolymers that code sequences for phase separation, hybridization and functionalization. Kinetic pathway guidance using temperature ramps balances the counteracting mesoscale phase separation during heating with nanoscale duplex recognition during cooling to yield a diversity of complex all-DNA colloids with control over the internal dynamics and of their superstructures. Our approach provides a facile and versatile platform to add mesostructural layers into hierarchical all-DNA materials. The high density of addressable ssDNA blocks opens routes for applications such as gene delivery, artificial evolution or spatially encoded (bio)materials.


Assuntos
Coloides/química , DNA/química , Nanoestruturas/química , Sequência de Bases , DNA de Cadeia Simples/química , Géis/química , Ouro/química , Luz , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Transição de Fase , Temperatura
8.
Angew Chem Int Ed Engl ; 57(33): 10436-10448, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29676504

RESUMO

Scaffold-based lattice-engineered 3D DNA origami is a powerful and versatile technique for the rational design and build-up of arbitrarily structured and monodisperse DNA-based 3D nanoobjects. Relying on the unsurpassed molecular programmability of sequence-specific DNA hybridization, a long DNA single strand (termed scaffold) is assembled with many short single-stranded oligomers (termed staples), which organize the scaffold into a 3D lattice in a single step, thereby leading to 3D nanoparticulate structures of the highest precision in high yields. Applications of 3D DNA origami are increasingly wide-spread and interface with numerous fields of sciences, for example, anisometric or anisotropically functionalized nanoparticles, fundamental investigations of superstructure formation, biomedicine, (bio)physics, sensors, and optical materials. This Minireview discusses the fundamentals and recent advances from structure formation to selected applications, with a mission to promote cross-disciplinary exchange.

9.
Adv Mater ; 29(17)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28221714

RESUMO

Soft photonic materials are important for sensors, displays, or energy management and have become switchable under static equilibrium conditions by integration of responsive polymer features. The next step is to equip such materials with the ability for autonomously dynamic and self-regulating behavior, which would advance their functionality and application possibilities to new levels. Here, this study shows the system integration of a nonlinear, biocatalytic pH-feedback system with a pH-responsive block copolymer photonic gel, and demonstrates autonomous transient memories, remotely controlled signal propagation, and sensing. This study utilizes an enzymatic switch to program the lifetime of the reflective state of a photonic gel, and induces propagation of pH-waves extinguishable by illumination with UV-light. The described combination of nonlinear chemistry and responsive photonic gels opens pathways toward out-of-equilibrium photonic devices with active and autonomous behavior useful for sensing, computation, and communication.

10.
Angew Chem Int Ed Engl ; 55(23): 6776-9, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27136443

RESUMO

Visible-light-mediated photoredox-catalyzed aldimine-aniline and aldehyde-aniline couplings have been realized. The reductive single electron transfer (SET) umpolung of various carbonyl derivatives enabled the generation of intermediary ketyl and α-amino radical anions, which were utilized for the synthesis of unsymmetrically substituted 1,2-diamines and amino alcohols.

11.
Angew Chem Int Ed Engl ; 54(30): 8828-32, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26082970

RESUMO

Ketyl radical and amino radical anions, valuable reactive intermediates for C-C bond-forming reactions, are accessible through a C=O/C=NR umpolung. However, their utilization in catalysis remains largely underdeveloped owing to the high reduction potential of carbonyl compounds and imines. In the context of photoredox catalysis, tertiary amines are commonly employed as sacrificial co-reducing agents. Herein, an additional role of the amine is proposed, in which it is essential for the organocatalytic substrate activation. The combination of photoredox catalysis and carbonyl/imine activation enables the reductive coupling of aldehydes, ketones, and imines under mild reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...