Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38000151

RESUMO

During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.


Assuntos
Tecido Elástico , Elastina , Humanos , Adulto , Morfogênese , Intestino Delgado , Fenômenos Mecânicos
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502968

RESUMO

During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.

3.
Integr Comp Biol ; 63(6): 1455-1473, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37193661

RESUMO

While the modern framework of evolutionary development (evo-devo) has been decidedly genetic, historic analyses have also considered the importance of mechanics in the evolution of form. With the aid of recent technological advancements in both quantifying and perturbing changes in the molecular and mechanical effectors of organismal shape, how molecular and genetic cues regulate the biophysical aspects of morphogenesis is becoming increasingly well studied. As a result, this is an opportune time to consider how the tissue-scale mechanics that underlie morphogenesis are acted upon through evolution to establish morphological diversity. Such a focus will enable a field of evo-devo mechanobiology that will serve to better elucidate the opaque relations between genes and forms by articulating intermediary physical mechanisms. Here, we review how the evolution of shape is measured and related to genetics, how recent strides have been made in the dissection of developmental tissue mechanics, and how we expect these areas to coalesce in evo-devo studies in the future.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Animais , Morfogênese
4.
Front Immunol ; 12: 798552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938299

RESUMO

The gut is a tubular organ responsible for nutrient absorption and harbors our intestinal microbiome. This organ is composed of a multitude of specialized cell types arranged in complex barrier-forming crypts and villi covered by a mucosal layer controlling nutrient passage and protecting from invading pathogens. The development and self-renewal of the intestinal epithelium are guided by niche signals controlling the differentiation of specific cell types along the crypt-villus axis in the epithelium. The emergence of microphysiological systems, or organ-on-chips, has paved the way to study the intestinal epithelium within a dynamic and controlled environment. In this review, we describe the use of organ-on-chip technology to control and guide these differentiation processes in vitro. We further discuss current applications and forthcoming strategies to investigate the mechanical processes of intestinal stem cell differentiation, tissue formation, and the interaction of the intestine with the microbiota in the context of gastrointestinal diseases.


Assuntos
Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal/fisiologia , Técnicas de Cultura de Células em Três Dimensões , Autorrenovação Celular , Humanos , Miniaturização , Técnicas de Cultura de Órgãos
5.
Methods Cell Biol ; 159: 175-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32586442

RESUMO

The use of human pluripotent stem cells (hPSCs) and differentiation techniques offer new ways to generate specific tissue. It is now possible to differentiate hPSC into human intestinal organoids that include an enteric nervous system. Using step-wise differentiation processes, we generate innervated intestinal organoids that form three-dimensional structures bearing an epithelium, neurons and glial cells embedded in a supporting mesenchyme. Innervated organoids further develop to a complex structure with similar organization and cellular differentiation as the developing intestine. These tools open up new fields of application in the study of the development and pathophysiology of enteric neuropathies. Herein, we describe the generation of both human intestinal organoids and vagal neural crest cells from hPSC and their combination into an innervated organoid. We also discuss technical considerations for these experiments, and highlight advantages and limitations of the system.


Assuntos
Sistema Nervoso Entérico/fisiologia , Intestinos/citologia , Organoides/citologia , Organoides/inervação , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Humanos , Crista Neural/citologia
6.
Med Sci (Paris) ; 35(6-7): 549-555, 2019.
Artigo em Francês | MEDLINE | ID: mdl-31274085

RESUMO

The study of gut diseases is often limited by the access to human biological tissues and animal models that do not faithfully mimic the human pathologies. In this context, the development of intestinal organoids from human pluripotent stem cells is paving the way of gastrointestinal physiology and digestive disease study. In this review, we recall the embryonic development of the digestive tract and its translation to human pluripotent stem cell differentiation. We also present the different types of intestinal organoids that can be generated, as well as their applications in research.


TITLE: Façonner l'intestin à partir des cellules souches pluripotentes humaines. ABSTRACT: L'étude des maladies digestives est parfois limitée par l'accès aux tissus de patients et les modèles précliniques ne sont pas toujours fidèles aux pathologies observées chez l'homme. Dans ce contexte, le développement d'organoïdes intestinaux à partir de cellules souches pluripotentes humaines représente une avancée importante dans l'étude des processus physiologiques et des pathologies digestives. Dans cette revue, nous rappelons les étapes majeures du développement du tractus digestif chez l'homme et décrivons le rationnel de la différenciation dirigée des cellules souches pluripotentes humaines. Nous faisons également un état des lieux sur les différents types d'organoïdes intestinaux existants et leurs applications en recherche fondamentale et préclinique. Enfin, nous discutons des opportunités offertes par les organoïdes intestinaux humains dans un contexte de médecine de précision et de médecine réparatrice.


Assuntos
Intestinos/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Gastroenteropatias/patologia , Gastroenteropatias/terapia , Trato Gastrointestinal/citologia , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Intestinos/fisiologia , Organoides/fisiologia , Células-Tronco Pluripotentes/fisiologia , Regeneração/fisiologia , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...