Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 2): 056404, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004876

RESUMO

A two-dimensional model of microwave-induced plasma (field frequency 2.45 GHz) in argon at atmospheric pressure is presented. The model describes in a self-consistent manner the gas flow and heat transfer, the in-coupling of the microwave energy into the plasma, and the reaction kinetics relevant to high-pressure argon plasma including the contribution of molecular ion species. The model provides the gas and electron temperature distributions, the electron, ion, and excited state number densities, and the power deposited into the plasma for given gas flow rate and temperature at the inlet, and input power of the incoming TEM microwave. For flow rate and absorbed microwave power typical for analytical applications (200-400 ml/min and 20 W), the plasma is far from thermodynamic equilibrium. The gas temperature reaches values above 2000 K in the plasma region, while the electron temperature is about 1 eV. The electron density reaches a maximum value of about 4 × 10(21) m(-3). The balance of the charged particles is essentially controlled by the kinetics of the molecular ions. For temperatures above 1200 K, quasineutrality of the plasma is provided by the atomic ions, and below 1200 K the molecular ion density exceeds the atomic ion density and a contraction of the discharge is observed. Comparison with experimental data is presented which demonstrates good quantitative and qualitative agreement.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 2): 036405, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905228

RESUMO

The local-mean-energy approximation (LMEA) and the local-field approximation (LFA) are commonly applied to include the electron properties like transport and rate coefficients into a hydrodynamic description of gas discharge plasmas. Both the approaches base on the solution of the stationary spatially homogeneous Boltzmann equation for the electron component, but the consequences of these approaches differ drastically. These consequences of using both the approaches are studied and discussed on a kinetic level and by comparison of results of hydrodynamic investigations of low-pressure glow discharge plasmas. It is found that the LMEA is to be strongly recommended for the application to a hydrodynamic description of dc as well as rf discharge plasmas, while the LFA is conditionally suitable to describe dc glow discharges with rough reaction kinetics only and its application to rf discharge plasmas is inappropriate.


Assuntos
Algoritmos , Gases/química , Temperatura Alta , Modelos Teóricos , Reologia/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...