Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 244(Pt 1): 456-462, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28800555

RESUMO

Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11mg/L, and 74±8% of total ammonia (TA) removal to 12±3mg-N/L for domestic wastewater (COD of 193±23mg/L and TA of 49±5mg-N/L) treatment. Nitrate and nitrite concentrations were always low (<1mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos , Anaerobiose , Nitrogênio , Ultrafiltração
2.
Water Sci Technol ; 64(11): 2253-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22156130

RESUMO

Tubular cathodes provide a method to obtain high surface areas for scaling up microbial fuel cells (MFCs), but the importance of the cathode shape is not known. We therefore examined power production using cathodes in various configurations (tubes or flat). The MFC with a single internal carbon cloth tube cathode (71 W/m(3)) produced more power than previously obtained with an ultrafiltration membrane (8 W/m(3)) due to the better performance of carbon material. This power density was slightly less than that of a flat carbon cloth cathode (81 W/m(3); 88 m(2)/m(3)) due to the lower total surface area of the tube (68 m(2)/m(3)) and not as a result of the tubular cathode shape. Adding a second tube increased power (83 W/m(3)) in proportion to specific surface area (93 m(2)/m(3)). Wrapping the cathode completely around the anode formed a fully tubular MFC (external tubular reactor) with a higher surface area that produced 128 W/m(3). Volumetric power density was highly correlated with cathode specific surface area (R(2) = 0.93, p = 0.008) and did not depend on the cathode shape (tubes, completely tubular, or flat). Thus, future MFC designs should focus on increasing cathode specific surface area.


Assuntos
Fontes de Energia Bioelétrica , Reatores Biológicos , Carbono/química , Eletricidade , Eletrodos
3.
Water Sci Technol ; 60(5): 1311-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19717919

RESUMO

Oxygen intrusion into the anode chamber through proton exchange membrane can result in positive redox conditions in fed-batch, two chamber MFCs at the end of a cycle when the substrate is depleted. A slight increase in dissolved oxygen to 0.3 mg/L during MFC operation was not found to adversely affect power generation over subsequent cycles if sufficient substrate (acetate) was provided. Purging the anode chamber with air or pure oxygen for up to 10 days and 10 hrs also did not affect power generation, as power rapidly returned to previous levels when the chamber was sparged with nitrogen gas. When MFCs are connected in series, voltage reversal can occur resulting in a positive voltage applied to the anode biofilm. To investigate if this adversely affected the bacteria, voltages of 1, 2, 3, 4, and 9 V, were applied for 1 hr to the MFC before reconnecting it back to a fixed external load (1,000 Omega). A voltage of <2 V did not affect power generation. However, applying 3 V resulted in a 15 h lag phase before recovery, and 9 V produced a 60 h lag phase suggesting substantial damage to the bacteria that required re-growth of bacteria in the biofilm. These results indicate that charge reversal will be a more serious problem than oxygen intrusion into the anode chamber for sustained performance of MFCs.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Oxigênio/química , Biofilmes , Eletrodos , Solubilidade , Fatores de Tempo
4.
J Appl Microbiol ; 103(6): 2258-66, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18045409

RESUMO

AIMS: To characterize cellulolytic, hydrogen-producing clostridia on a comparable basis. METHODS AND RESULTS: H(2) production from cellulose by six mesophilic clostridia was characterized in standardized batch experiments using MN301 cellulose, Avicel and cellobiose. Daily H(2) production, substrate degradation, biomass production and the end-point distribution of soluble fermentation products varied with species and substrates. All species produced a significant amount of H(2) from cellobiose, with Clostridium acetobutylicum achieving the highest H(2) yield of 2.3 mol H(2) mol(-1) hexose, but it did not degrade cellulose. Clostridium cellulolyticum and Clostridium populeti catalysed the highest H(2) production from cellulose, with yields of 1.7 and 1.6 mol H(2 )mol(-1) hexose from MN301 and 1.6 and 1.4 mol H(2) mol(-1) hexose from Avicel, respectively. These species also achieved 25-100% higher H(2) production rates from cellulose than the other species. CONCLUSIONS: These cellulolytic, hydrogen-producing clostridia varied in H(2) production, with Cl. cellulolyticum and Cl. populeti achieving the highest H(2) yields and cellulose degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentation of cellulosic materials presents a means of H(2) production from renewable resources. This standardized comparison provides a quantitative baseline for improving H(2) production from cellulose through medium and process optimization and metabolic engineering.


Assuntos
Celulose/metabolismo , Clostridium/metabolismo , Hidrogênio/metabolismo , Microbiologia Industrial , Biodegradação Ambiental , Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia , Clostridium acetobutylicum/metabolismo , Clostridium cellulolyticum/metabolismo , Fermentação
5.
Water Sci Technol ; 52(1-2): 31-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16180406

RESUMO

It is possible to directly generate electricity using bacteria while accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize a substrate, they remove electrons. Current generation is made possible by keeping bacteria separated from oxygen, but allowing the bacteria growing on an anode to transfer electrons to the counter electrode (cathode) that is exposed to air. In this paper, several advances are discussed in this technology, and a calculation is made on the potential for electricity recovery. Assuming a town of 100,000 people generate 16.4 x 10(6) L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant if all the energy is recovered as electricity. So far, power densities are low, resulting in power generation rates of 150 kW/m2. Progress is being made that we believe may result in as much as 0.5 MW from wastewater treatment. The generation of electricity during wastewater treatment may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Conservação de Recursos Energéticos , Eliminação de Resíduos Líquidos/métodos , Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Fontes de Energia Bioelétrica/economia , Butiratos/metabolismo , Carbono , Eletrodos , Glucose/metabolismo , Oxigênio , Platina , Prótons
6.
Microb Ecol ; 49(3): 388-98, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16003477

RESUMO

Bioremediation of perchlorate-contaminated groundwater can occur via bacterial reduction of perchlorate to chloride. Although perchlorate reduction has been demonstrated in bacterial pure cultures, little is known about the efficacy of using perchlorate-reducing bacteria as inoculants for bioremediation in the field. A pilot-scale, fixed-bed bioreactor containing plastic support medium was used to treat perchlorate-contaminated groundwater at a site in Southern California. The bioreactor was inoculated with a field-grown suspension of the perchlorate-respiring bacterium Dechlorosoma sp. strain KJ and fed groundwater containing indigenous bacteria and a carbon source amendment. Because the reactor was flushed weekly to remove accumulated biomass, only bacteria capable of growing in biofilms in the reactor were expected to survive. After 26 days of operation, perchlorate was not detected in bioreactor effluent. Perchlorate remained undetected by ion chromatography (detection limit 4 mug L(-1)) during 6 months of operation, after which the reactor was drained. Plastic medium was subsampled from top, middle, and bottom locations of the reactor for shipment on blue ice and storage at -80 degrees C prior to analysis. Microbial community DNA was extracted from successive washes of thawed biofilm material for PCR-based community profiling by 16S-23S ribosomal intergenic spacer analysis (RISA). No DNA sequences characteristic of strain KJ were recovered from any RISA bands. The most intense bands yielded DNA sequences with high similarities to Dechloromonas spp., a closely related but different genus of perchlorate-respiring bacteria. Additional sequences from RISA profiles indicated presence of representatives of the low G+C gram-positive bacteria and the Cytophaga-Flavobacterium-Bacteroides group. Confocal scanning laser microscopy and fluorescence in situ hybridization (FISH) were also used to examine biofilms using genus-specific 16S ribosomal RNA probes. FISH was more sensitive than RISA profiling in detecting possible survivors from the initial inoculum. FISH revealed that bacteria hybridizing to Dechlorosoma probes constituted <1% of all cells in the biofilms examined, except in the deepest portions where they represented 3-5%. Numbers of bacteria hybridizing to Dechloromonas probes decreased as biofilm depth increased, and they were most abundant at the biofilm surface (23% of all cells). These spatial distribution differences suggested persistence of low numbers of the inoculated strain Dechlorosoma sp. KJ in parts of the biofilm nearest to the plastic medium, concomitant with active colonization or growth by indigenous Dechloromonas spp. in the biofilm exterior. This study demonstrated the feasibility of post hoc analysis of frozen biofilms following completion of field remediation studies.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Percloratos/metabolismo , Poluentes Químicos da Água/metabolismo , DNA Bacteriano/análise , Oxirredução , Sobrevida , Purificação da Água/métodos
7.
Water Res ; 35(14): 3373-80, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11547858

RESUMO

It is well known that the permeability and density of an aggregate decreases with its size, affecting its settling velocity and coagulation rate (rate of particle capture) with other particles. This change in aggregate density with size can be described by fractal scaling relationships. Two distinctly different fractal scaling approaches, however, have been used to describe aggregate permeability. In one approach (single-particle-fractal model), the permeability is calculated by assuming primary particles are uniformly distributed in the aggregate. In the other approach (cluster-fractal model), it is assumed that aggregates are composed of primary particles separated into individual clusters that are less permeable than the aggregate. The overall permeability of the aggregate is dependent on the number and sizes of these clusters. Using three different permeability correlations (Brinkman, Happel and Carmen-Kozeny), it is demonstrated through comparison with aggregate settling velocity data that the single-particle-fractal model does not provide realistic predictions of settling velocity as a function of aggregate size. In addition, it is shown that the Carmen-Kozeny permeability equation does not produce realistic settling velocity relationships. The transport settling velocity and capture rate of sinking aggregates in natural and engineered environments should therefore only be calculated using the Happel or Brinkman equations and a cluster-fractal model.


Assuntos
Fractais , Modelos Químicos , Precipitação Química , Tamanho da Partícula , Permeabilidade
8.
Water Environ Res ; 73(1): 58-62, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11558304

RESUMO

To accurately measure the oxygen demand of a wastewater sample in a headspace biochemical oxygen demand (HBOD) or other respirometric test, the rate of oxygen transfer to the aqueous phase must be greater than the oxygen exertion rate by the sample. Oxygen mass-transfer coefficients (Kawa) measured for 28-, 55-, and 160-mL, partially full (18 to 89%) containers placed on their sides on a shaker table and mixed at 200 r/min averaged 8.0 h-1 (range 5.4 to 9.9 h-1). For this mass-transfer coefficient, HBOD values as great as 1340 mg/L.d are possible at the start of an HBOD test, although the maximum daily HBOD declines to 192 mg/L.d at the end of the test because of oxygen depletion in the sample headspace. Mass-transfer coefficients for shaken samples decreased only at low shaking speeds (< 50 r/min). Oxygen mass-transfer coefficients for shaken samples were always larger than those (average of 1.8 h-1) measured for samples in a 250-mL bottle mixed with a stir bar on a stir plate. These mass-transfer coefficients indicate that the oxygen demand of typical full-strength municipal wastewaters can be measured in HBOD tests without oxygen transfer limiting the reaction rate.


Assuntos
Modelos Teóricos , Oxigênio/metabolismo , Eliminação de Resíduos , Desenho de Equipamento , Cinética , Manejo de Espécimes
9.
Water Res ; 35(13): 3071-6, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11487102

RESUMO

Perchlorate (ClO4-) has been detected in a large number of surface and ground waters in the US. Due to health concerns of perchlorate in drinking water, the California Department of Health Services has established a provisional action level of 18 microg/L. Several microbial isolates have been obtained capable of microbiological perchlorate reduction through cell respiration, but few of these have been tested for perchlorate removals to these low levels. The feasibility of using one isolate (KJ) for water treatment was tested in a packed-bed bioreactor by comparing minimum detention times necessary to achieve complete removal of perchlorate. Perchlorate was reduced approximately from 20 mg/L to non-detectable (< 4 microg/L) levels in acetate-fed columns inoculated with KJ or mixed cultures. The complete conversion of perchlorate to chloride was demonstrated by a stoichiometric ratio of perchlorate to chloride of 1.0 +/- 0.14. Perchlorate removal to non-detectable levels required a minimum empty bed contact time (EBCT) of only 2.1 min for the column inoculated with KJ, vs. 31 min for the mixed culture column. Acetate was used at a molar ratio of C2H3O2-/ClO4- of 2.9 (n = 6) for the mixed culture, while more than twice as much acetate was consumed on average (6.6 +/- 2.0, n = 156) by the pure culture. These results demonstrate that detention times of packed-bed bioreactors can be substantially reduced using isolate KJ, but that larger concentrations of acetate will be necessary to reduce perchlorate to low levels necessary for drinking water.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Percloratos/metabolismo , Compostos de Sódio/metabolismo , Poluentes Químicos da Água/metabolismo , Absorção , Acetatos/metabolismo , Biodegradação Ambiental , Biofilmes , Biomassa , Cloretos/metabolismo , Fatores de Tempo , Abastecimento de Água/normas
10.
Water Res ; 35(12): 3034-8, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11471705

RESUMO

Perchlorate (ClO4-) has been detected in numerous ground and surface waters, and has recently been added to the drinking water Candidate Contaminant List in the United States. Perchlorate can be removed from drinking water using ion exchange, but this results in the production of highly saline (7-12%) perchlorate-contaminated brines. Perchlorate-degrading microbial enrichments capable of growth in highly saline water were obtained by screening six salt water environments including marine and lake surface waters, salt marshes, subtidal sediments, and a biofilm/sludge from a seawater filter. Perchlorate reduction was obtained in three of these samples (seawater, saline lake water, and biofilm/sludge) at a salinity of 3%. The salinity range of two of these cultures was extended through serial transfers into media having higher salt concentrations (3-7%). Growth rates were measured over a salinity range of 1-15%. The maximum growth rate measured for the saline lake-water enrichment was 0.060+/-0.003 d(-1) (doubling time of 11.6+/-0.8 d) at a salinity of 5%. Growth rates decreased to 0.037+/-0.002 d(-1) at a salinity of 11%, and no growth was observed at salinities of 13 or 15%. These results demonstrate for the first time that biological perchlorate reduction is possible in solutions having a salinity typical of ion exchange brines.


Assuntos
Percloratos/metabolismo , Água do Mar/microbiologia , Compostos de Sódio/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos , Troca Iônica , Oxirredução , Percloratos/normas , Sais/farmacologia , Água do Mar/química , Esgotos/microbiologia , Compostos de Sódio/normas , Solubilidade , Estados Unidos , Poluentes Químicos da Água/normas , Abastecimento de Água/análise , Abastecimento de Água/normas
11.
Appl Environ Microbiol ; 67(6): 2499-506, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11375156

RESUMO

Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated "Dechlorosoma" sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h(-1), respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h(-1), respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h(-1), respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h(-1), respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h(-1)) and exceeded that of strain KJ on perchlorate (0.14 h(-1)). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 +/- 0.07 [n = 7]), chlorate (0.44 +/- 0.05 [n = 7]), and perchlorate (0.50 +/- 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.


Assuntos
Betaproteobacteria/metabolismo , Cloratos/metabolismo , Percloratos/metabolismo , Poluentes da Água/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Biomassa , DNA Ribossômico/genética , Transporte de Elétrons , Cinética , Dados de Sequência Molecular , Consumo de Oxigênio , Filogenia , RNA Ribossômico 16S/genética
13.
Environ Sci Technol ; 32(21): 502A-7A, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21650487

RESUMO

At the frontiers of research, environmental engineers are using novel tools to obtain knowledge about complex environmental systems.

14.
Biodegradation ; 7(3): 175-82, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8782389

RESUMO

Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.


Assuntos
Basidiomycota/metabolismo , Poluentes Ambientais/metabolismo , Lignina/análogos & derivados , Pentaclorofenol/metabolismo , Basidiomycota/efeitos dos fármacos , Basidiomycota/enzimologia , Biodegradação Ambiental , Biomassa , Cloretos/metabolismo , Meios de Cultura , Espaço Extracelular/enzimologia , Lignina/farmacologia , Espectrofotometria Ultravioleta
15.
Appl Environ Microbiol ; 61(5): 1750-6, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7646012

RESUMO

Seven chemicals, three buffers, and a salt solution known to affect bacterial attachment were tested to quantify their abilities to enhance the penetration of Alcaligenes paradoxus in porous media. Chemical treatments included Tween 20 (a nonionic surfactant that affects hydrophobic interactions), sodium dodecyl sulfate (an anionic surfactant), EDTA (a cell membrane permeabilizer that removes outer membrane lipopolysaccharides), sodium PPi (a surface charge modifier), sodium periodate (an oxidizer that cleaves surface polysaccharides), lysozyme (an enzyme that cleaves cell wall components), and proteinase K (a nonspecific protease that cleaves peptide bonds). Buffers included MOPS [3-(N-morpholino)propanesulfonic acid], Tris, phosphate, and an unbuffered solution containing only NaCl. Transport characteristics in the porous media were compared by using a sticking coefficient, alpha, defined as the rate at which particles stick to a grain of medium divided by the rate at which they strike the grain. Tween 20 reduced alpha by 2.5 orders of magnitude, to alpha = 0.0016, and was the most effective chemical treatment for decreasing bacterial attachment to glass beads in buffered solutions. Similar reductions in alpha were achieved in unbuffered solutions by reducing the solution ionic strength to 0.01 mM. EDTA, protease, and other treatments designed to alter cell structures did not reduce alpha by more than an order of magnitude. The number of bacteria retained by the porous media was decreased by treatments that made A. paradoxus more hydrophobic and less electrostatically charged, although alpha was poorly correlated with electrophoretic mobility and hydrophobicity index measurements at lower alpha values.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Alcaligenes/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Alcaligenes/fisiologia , Soluções Tampão , Difosfatos/farmacologia , Ácido Edético/farmacologia , Endopeptidase K , Vidro , Microesferas , Muramidase/farmacologia , Ácido Periódico/farmacologia , Polissorbatos/farmacologia , Serina Endopeptidases/farmacologia , Dodecilsulfato de Sódio/farmacologia , Microbiologia do Solo , Microbiologia da Água
17.
Appl Environ Microbiol ; 58(12): 4048-50, 1992 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16348831

RESUMO

The growth of six species of white rot fungi was a function of pentachlorophenol (PCP) dose, expressed as mass of PCP per mass of mycelia, at PCP doses

18.
Appl Environ Microbiol ; 57(11): 3093-100, 1991 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16348577

RESUMO

To investigate the effect of fluid shear on uptake rates of low-diffusivity macromolecular substrates by suspended cultures, we measured the uptake of two compounds as models of macromolecules, a protein (bovine serum albumin [BSA]) and a polysaccharide (dextran), using pure cultures of Zoogloea ramigera and Escherichia coli, respectively. Oxygen utilization rates of stirred samples grown on BSA and dextran were 2.3 and 2.9 times higher, respectively, than those of undisturbed (still) samples. Uptake rates of H-BSA and [H]dextran by stirred samples were 12.6 and 6.2 times higher, respectively, than those by still samples. These experimentally obtained increases are larger than those predicted with a mass transfer model. Model results indicated that stirring would increase uptake by factors of 1.6 and 1.8 for BSA and dextran. As predicted by the model, we also found that uptake rates of low-molecular-weight substrates with high diffusivities, such as leucine and glucose, were only slightly affected by fluid shear. Since macromolecules can make up a major portion of bacterial substrate in natural, laboratory, and engineered systems, the demonstrated effect of fluid shear has wide implications for kinetic studies performed in basic metabolic research as well as in the evaluation of engineered bioreactors used for wastewater treatment.

19.
Biotechnol Bioeng ; 38(4): 389-96, 1991 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18600775

RESUMO

The fractal nature microbial aggregates is a function of the type of microorganism and mixing conditions used to develop aggregates. We determined fractal dimensions from length-projected area (D(2)) and length-number scaling (D(3)) relationships. Aggregates of Zoogloea ramigera developed in rotating test tubes were both surface and mass fractals, with fractal dimensions of D(2) = 1.69 +/- 0.11 and D(3)= 1.79 +/- 0.28 (+/-standard deviation), respectively. When we grew this bacteria in a bench-top fermentor, aggregates maintained their surface fractal characteristics (D(2) = 1.78 +/- 0.11) but lost their mass fractal characteristics (D(3) = 2.99 +/- 0.36). Yeast aggregates (Saccharomyces cerevisae) grown in rotating tests tubes had higher average fractal dimensions than bacterial aggregates grown under physically identical conditions, and were also considered fractal (D(2) = 1.92 +/- 0.08 and D(3) = 2.66 +/- 0.34). Aggregates porosity can be expressed in term of a fractal dimensions, but average porosities are higher than expected. The porosities of yeast aggregates (0.9250-0.9966) were similar to porosities of bacterial aggregates (0.9250-0.9966) cultured under the same physical conditions, although bacterial aggregates developed in the reactor had higher average porosities (0.9857-0.9980). These results suggest that that scaling relationships based on fractal geometry may be more useful than equations derived from Euclidean geometry for quantifying the effects of different fluid mechanical environments on aggregates morphology and characteristics such as density, porosity, and projected surface area.

20.
Biotechnol Bioeng ; 35(11): 1135-44, 1990 May.
Artigo em Inglês | MEDLINE | ID: mdl-18592492

RESUMO

The effect of fluid flow and laminar shear on bacterial uptake was examined under conditions representative of the fluid environment of unattached and attached cells in wastewater treatment bioreactors. Laminar shear rates below 50 s(-1) did not increase leucine uptake by suspended cultures of Zoogloea ramigera. However, leucine uptake by cells fixed in a flow field of approximately 1 mm s(-1) was 55-65% greater than uptake by suspended cells. Enhanced microbial uptake with advective motion is consistent with mass transfer rates calculated using Sherwood number correlations. Advective flow increases microbial uptake by increasing collisions between substrate molecules and cells through compression of the concentration boundary layer surrounding a cell. The rate of leucine uptake suggests that binding proteins used to transport leucine into the cell can occupy approximately 1% of the cell surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...