Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cornea ; 42(1): 97-104, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35965399

RESUMO

PURPOSE: We recently showed that in situ-forming collagen gels crosslinked through multifunctional polyethylene glycol (PEG) supported corneal epithelialization 7 days after treatment of lamellar keratectomy wounds. In this study, we aimed to evaluate the longer-term regenerative effects of this gel in animals. METHOD: Corneal wound healing was assessed 60 days after lamellar keratectomy and gel treatment using slitlamp examination, optical coherence tomography (OCT), pachymetry, corneal topography, an ocular response analyzer, and tonometry. The corneas were evaluated for the presence of beta-tubulin, cytokeratin 3, zonula occludens-1, and alpha smooth muscle actin (SMA) markers. Gene expression of aldehyde dehydrogenase 3A1 (ALDH3A1), cluster of differentiation 31, CD163, alpha-SMA, hepatocyte growth factor, and fibroblast growth factor 2 (FGF-2) and protein expression of CD44 and collagen VI were evaluated. RESULTS: Intraocular pressure, corneal thickness, and hysteresis for the corneas treated with collagen-PEG gels did not significantly change compared with the saline group. However, placido disk topography revealed greater regularity of the central cornea in the gel-treated group compared to the saline group. The gel-treated group exhibited a lower degree of epithelial hyperplasia than the saline group. Immunohistochemical and gene expression analysis showed that the gel-treated corneas exhibited lower alpha-SMA expression compared with the saline group. CD163 and CD44 were found to be elevated in the saline-treated group compared with normal corneas. CONCLUSIONS: The in situ-forming collagen-PEG gel promoted epithelialization that improved central corneal topography, epithelial layer morphology, and reduced expression of fibrotic and inflammatory biomarkers after 60 days compared to the saline group.


Assuntos
Lesões da Córnea , Hidrogéis , Animais , Polietilenoglicóis , Seguimentos , Colágeno/metabolismo , Córnea/metabolismo
2.
Transl Vis Sci Technol ; 11(10): 22, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36239965

RESUMO

Purpose: Millions worldwide suffer vision impairment or blindness from corneal injury, and there remains an urgent need for a more effective and accessible way to treat corneal defects. We have designed and characterized an in situ-forming semi-interpenetrating polymer network (SIPN) hydrogel using biomaterials widely used in ophthalmology and medicine. Methods: The SIPN was formed by cross-linking collagen type I with bifunctional polyethylene glycol using N-hydroxysuccinimide ester chemistry in the presence of linear hyaluronic acid (HA). Gelation time and the mechanical, optical, swelling, and degradation properties of the SIPN were assessed. Cytocompatibility with human corneal epithelial cells and corneal stromal stem cells (CSSCs) was determined in vitro, as was the spatial distribution of encapsulated CSSCs within the SIPN. In vivo wound healing was evaluated by multimodal imaging in an anterior lamellar keratectomy injury model in rabbits, followed by immunohistochemical analysis of treated and untreated tissues. Results: The collagen-hyaluronate SIPN formed in situ without an external energy source and demonstrated mechanical and optical properties similar to the cornea. It was biocompatible with human corneal cells, enhancing CSSC viability when compared with collagen gel controls and preventing encapsulated CSSC sedimentation. In vivo application of the SIPN significantly reduced stromal defect size compared with controls after 7 days and promoted multilayered epithelial regeneration. Conclusions: This in situ-forming SIPN hydrogel may be a promising alternative to keratoplasty and represents a step toward expanding treatment options for patients suffering from corneal injury. Translational Relevance: We detail the synthesis and initial characterization of an SIPN hydrogel as a potential alternative to lamellar keratoplasty and a tunable platform for further development in corneal tissue engineering and therapeutic cell delivery.


Assuntos
Lesões da Córnea , Hidrogéis , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Colágeno/química , Colágeno/farmacologia , Colágeno/uso terapêutico , Colágeno Tipo I , Ésteres , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Polímeros/química , Coelhos
3.
Ocul Surf ; 23: 148-161, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34537415

RESUMO

Severe corneal wounds can lead to ulceration and scarring if not promptly and adequately treated. Hyaluronic acid (HA) has been investigated for the treatment of corneal wounds due to its remarkable biocompatibility, transparency and mucoadhesive properties. However, linear HA has low retention time on the cornea while many chemical moieties used to crosslink HA can cause toxicity, which limits their clinical ocular applications. Here, we used supramolecular non-covalent host-guest interactions between HA-cyclodextrin and HA-adamantane to form shear-thinning HA hydrogels and evaluated their impact on corneal wound healing. Supramolecular HA hydrogels facilitated adhesion and spreading of encapsulated human corneal epithelial cells ex vivo and improved corneal wound healing in vivo as an in situ-formed, acellular therapeutic membrane. The HA hydrogels were absorbed within the corneal stroma over time, modulated mesenchymal cornea stromal cell secretome production, reduced cellularity and inflammation of the anterior stroma, and significantly mitigated corneal edema compared to treatment with linear HA and untreated control eyes. Taken together, our results demonstrate supramolecular HA hydrogels as a promising and versatile biomaterial platform for corneal wound healing.


Assuntos
Lesões da Córnea , Hidrogéis , Córnea , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização
4.
FASEB J ; 35(4): e21341, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710665

RESUMO

Tissues typically harbor subpopulations of resident immune cells that function as rapid responders to injury and whose activation leads to induction of an adaptive immune response, playing important roles in repair and protection. Since the lens is an avascular tissue, it was presumed that it was absent of resident immune cells. Our studies now show that resident immune cells are a shared feature of the human, mouse, and chicken lens epithelium. These resident immune cells function as immediate responders to injury and rapidly populate the wound edge following mock cataract surgery to function as leader cells. Many of these resident immune cells also express MHCII providing them with antigen presenting ability to engage an adaptive immune response. We provide evidence that during development immune cells migrate on the ciliary zonules and localize among the equatorial epithelial cells of the lens adjacent to where the ciliary zonules associate with the lens capsule. These findings suggest that the vasculature-rich ciliary body is a source of lens resident immune cells. We identified a major role for these cells as rapid responders to wounding, quickly populating each wound were they can function as leaders of lens tissue repair. Our findings also show that lens resident immune cells are progenitors of myofibroblasts, which characteristically appear in response to lens cataract surgery injury, and therefore, are likely agents of lens pathologies to impair vision like fibrosis.


Assuntos
Cristalino/citologia , Animais , Galinhas , Células Epiteliais , Humanos , Camundongos , Miofibroblastos
5.
Curr Eye Res ; 46(8): 1105-1114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33474996

RESUMO

PURPOSE: Our goal is to develop a low-cost tool that can be used to create consistent, partial-thickness defects in rabbit and other large animals with minimal surgical training and that can facilitate pre-clinical testing of lamellar and in situ-forming biosynthetic matrix materials for corneal repair. MATERIALS & METHODS: In this study, three modified trephines were designed to create deep corneal wound defects with consistent depth in large animals. The modified trephines incorporated either 3D-printed parts made from photopolymerizable resins, or custom-cut commercially available Teflon sheets. Wound defects were imaged with optical coherence tomography (OCT), and the depth was analyzed based on the OCT images. RESULTS: The results revealed that an inner-stopper guard trephine had the best performance in creating consistent and precise wound defect depth compared to modified vacuum trephine and custom guard vacuum trephine. A 75% ± 10% cut of the cornea was achieved with the inner-stopper guard trephine. The wound defect depth by created by the inner-stopper guard trephine was independent of the corneal thickness or size of the globes. Although the cut depth of the inner-stopper guard trephine differed by the experience-level of its users, the consistency (standard deviation) of the depth was independent of experience. CONCLUSIONS: Our studies provided three cost-efficient animal trephines that can create corneal wounds of consistent depth by lab researchers without extensive training in keratectomy.


Assuntos
Córnea/cirurgia , Transplante de Córnea/instrumentação , Modelos Animais de Doenças , Desenho de Equipamento , Impressão Tridimensional , Ferida Cirúrgica/patologia , Animais , Córnea/diagnóstico por imagem , Politetrafluoretileno/química , Coelhos , Resinas Sintéticas/química , Ferida Cirúrgica/diagnóstico por imagem , Suínos , Tomografia de Coerência Óptica
6.
FASEB J ; 34(7): 9316-9336, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452112

RESUMO

The lens and central cornea are avascular. It was assumed that the adult lens had no source of immune cells and that the basement membrane capsule surrounding the lens was a barrier to immune cell migration. Yet, microfibril-associated protein-1 (MAGP1)-rich ciliary zonules that originate from the vasculature-rich ciliary body and extend along the surface of the lens capsule, form a potential conduit for immune cells to the lens. In response to cornea debridement wounding, we find increased expression of MAGP1 throughout the central corneal stroma. The immune cells that populate this typically avascular region after wounding closely associate with this MAGP1-rich matrix. These results suggest that MAGP1-rich microfibrils support immune cell migration post-injury. Using this cornea wound model, we investigated whether there is an immune response to the lens following cornea injury involving the lens-associated MAGP1-rich ciliary zonules. Our results provide the first evidence that following corneal wounding immune cells are activated to travel along zonule fibers that extend anteriorly along the equatorial surface of the lens, from where they migrate across the anterior lens capsule. These results demonstrate that lens-associated ciliary zonules are directly involved in the lens immune response and suggest the ciliary body as a source of immune cells to the avascular lens.


Assuntos
Corpo Ciliar/imunologia , Lesões da Córnea/fisiopatologia , Opacidade da Córnea/fisiopatologia , Imunidade/imunologia , Cristalino/imunologia , Microfibrilas/imunologia , Proteínas dos Microfilamentos/metabolismo , Animais , Córnea/cirurgia , Lesões da Córnea/etiologia , Lesões da Córnea/metabolismo , Opacidade da Córnea/etiologia , Opacidade da Córnea/metabolismo , Substância Própria/imunologia , Citoesqueleto , Cristalino/metabolismo , Cristalino/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
8.
Exp Eye Res ; 174: 173-184, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29879393

RESUMO

The formation and life-long growth of the ocular lens depends on the continuous differentiation of lens epithelial cells into lens fiber cells. To achieve their mature structure and transparent function, newly formed lens fiber cells undergo a series of cellular remodeling events including the complete elimination of cellular organelles to form the lens organelle-free zone (OFZ). To date, the mechanisms and requirements for organelle elimination by lens fiber cells remain to be fully elucidated. In previous studies, we detected the presence of mitochondria contained within autophagolysosomes throughout human and chick lenses suggesting that proteins targeting mitochondria for degradation by mitophagy could be required for the elimination of mitochondria during OFZ formation. Consistently, high-throughput RNA sequencing of microdissected embryonic chick lenses revealed that expression of a protein that targets mitochondria for elimination during erythrocyte formation, called BCL2 interacting protein 3-like (BNIP3L/NIX), peaks in the region of lens where organelle elimination occurs. To examine the potential role for BNIP3L in the elimination of mitochondria during lens fiber cell remodeling, we analyzed the expression pattern of BNIP3L in newborn mouse lenses, the effect of its deletion on organelle elimination and its co-localization with lens organelles. We demonstrate that the expression pattern of BNIP3L in the mouse lens is consistent with it playing an important role in the elimination of mitochondria during lens fiber cell organelle elimination. Importantly, we demonstrate that deletion of BNIP3L results in retention of mitochondria during lens fiber cell remodeling, and, surprisingly, that deletion of BNIP3L also results in the retention of endoplasmic reticulum and Golgi apparatus but not nuclei. Finally, we show that BNIP3L localizes to the endoplasmic reticulum and Golgi apparatus of wild-type newborn mouse lenses and is contained within mitochondria, endoplasmic reticulum and Golgi apparatus isolated from adult mouse liver. These data identify BNIP3L as a novel requirement for the elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during lens fiber cell remodeling and they suggest a novel function for BNIP3L in the regulation of endoplasmic reticulum and Golgi apparatus populations in the lens and non-lens tissues.


Assuntos
Retículo Endoplasmático/fisiologia , Complexo de Golgi/fisiologia , Cristalino/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Animais , Western Blotting , Perfilação da Expressão Gênica , Cristalino/embriologia , Fígado/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL
9.
Exp Cell Res ; 362(2): 477-488, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253534

RESUMO

The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.


Assuntos
Caderinas/genética , Diferenciação Celular/genética , Cristalino/metabolismo , Morfogênese/genética , Acetilação/efeitos dos fármacos , Actomiosina/genética , Animais , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Galinhas/genética , Citoesqueleto/genética , Humanos , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/genética , Cristalino/crescimento & desenvolvimento , Microtúbulos/genética , Microtúbulos/metabolismo , Nocodazol/farmacologia
10.
Sci Rep ; 7(1): 16235, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176738

RESUMO

The lens has been considered to be an immune privileged site not susceptible to the immune processes normally associated with tissue injury and wound repair. However, as greater insight into the immune surveillance process is gained, we have reevaluated the concept of immune privilege. Our studies using an N-cadherin lens-specific conditional knockout mouse, N-cadΔlens, show that loss of this cell-cell junctional protein leads to lens degeneration, necrosis and fibrotic change, postnatally. The degeneration of this tissue induces an immune response resulting in immune cells populating the lens that contribute to the development of fibrosis. Additionally, we demonstrate that the lens is connected to the lymphatic system, with LYVE(+) labeling reaching the lens along the suspensory ligaments that connect the lens to the ciliary body, providing a potential mechanism for the immune circulation. Importantly, we observe that degeneration of the lens activates an immune response throughout the eye, including cornea, vitreous humor, and retina, suggesting a coordinated protective response in the visual system to defects of a component tissue. These studies demonstrate that lens degeneration induces an immune response that can contribute to the fibrosis that often accompanies lens dysgenesis, a consideration for understanding organ system response to injury.


Assuntos
Anoftalmia/imunologia , Vigilância Imunológica , Microftalmia/imunologia , Animais , Anoftalmia/genética , Caderinas/genética , Caderinas/metabolismo , Olho/imunologia , Vasos Linfáticos/imunologia , Camundongos , Microftalmia/genética
11.
Dev Biol ; 428(1): 118-134, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552735

RESUMO

Tissue development and regeneration involve high-ordered morphogenetic processes that are governed by elements of the cytoskeleton in conjunction with cell adhesion molecules. Such processes are particularly important in the lens whose structure dictates its function. Studies of our lens-specific N-cadherin conditional knockout mouse (N-cadcKO) revealed an essential role for N-cadherin in the migration of the apical tips of differentiating lens fiber cells along the apical surfaces of the epithelium, a region termed the Epithelial Fiber Interface (EFI), that is necessary for normal fiber cell elongation and the morphogenesis. Studies of the N-cadcKO lens suggest that N-cadherin function in fiber cell morphogenesis is linked to the activation of Rac1 and myosin II, both signaling pathways central to the regulation of cell motility including determining the directionality of cellular movement. The absence of N-cadherin did not disrupt lateral contacts between fiber cells during development, and the maintenance of Aquaporin-0 and increased expression of EphA2 at cell-cell interfaces suggests that these molecules may function in this role. E-cadherin was maintained in newly differentiating fiber cells without interfering with expression of lens-specific differentiation proteins but was not able to replace N-cadherin function in these cells. The dependence of migration of the fiber cell apical domains along the EFI for lens morphogenesis on N-cadherin provides new insight into the process of tissue development.


Assuntos
Caderinas/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Cristalino/embriologia , Morfogênese/fisiologia , Animais , Aquaporinas/metabolismo , Caderinas/genética , Movimento Celular/genética , Ativação Enzimática , Epitélio/fisiologia , Proteínas do Olho/metabolismo , Cristalino/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/metabolismo , Neuropeptídeos/metabolismo , Receptor EphA2/biossíntese , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...