Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771993

RESUMO

Wearable E-textile systems should be comfortable so that highest efficiency of their functionality can be achieved. The development of electronic textiles (functional textiles) as a wearable technology for various applications has intensified the use of flexible wearable functional textiles instead of wearable electronics. However, the wearable functional textiles still bring comfort complications during wear. The purpose of this review paper is to sightsee and recap recent developments in the field of functional textile comfort evaluation systems. For textile-based materials which have close contact to the skin, clothing comfort is a fundamental necessity. In this paper, the effects of functional finishing on the comfort of the textile material were reviewed. A brief review of clothing comfort evaluations for textile fabrics based on subjective and objective techniques was conducted. The reasons behind the necessity for sensory evaluation for smart and functional clothing have been presented. The existing works of literature on comfort evaluation techniques applied to functional fabrics have been reviewed. Statistical and soft computing/artificial intelligence presentations from selected fabric comfort studies were also reviewed. Challenges of smart textiles and its future highlighted. Some experimental results were presented to support the review. From the aforementioned reviews, it is noted that the electronics clothing comfort evaluation of smart/functional fabrics needs more focus.

2.
Materials (Basel) ; 11(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563050

RESUMO

Functional finishing brings an alteration on the mechanical and surface properties of textile materials and henceforth influences the tactile properties. In this work, Kawabata evaluation systems (KES) for fabrics were utilized to notice the changes in the tactile properties of fabrics resulting from different finishing types such as inkjet printing, screen printing, and coating. The effects of functional finishing on the fabric's tactile property were inconsistent with reference to the course of decrease or increase being dependent on the types of finishes. The findings showed that KES can be employed as a promising tool to sort out the suitable functional finishing types in terms of tactile properties. Amongst the implemented finishing types, inkjet printing offered superior tactile properties with respect to tensile energy (softness), shear rigidity, compressional softness, bending stiffness (drapability), and surface properties. The KES results confirmed that low-stress mechanical properties are strongly associated with the tactile property and might assist as a quality profile data source for guaranteeing the production and development of a virtuous quality product. The result encourages further utilization of the KES for functional fabric tactile property evaluation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...