Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409788, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954428

RESUMO

The condensation of amino acids into peptides plays a crucial role in protein synthesis and is thus essential for understanding the origins of life. However, the spontaneous formation of peptides from amino acids in bulk aqueous media is energetically unfavorable, posing a challenge for elucidating plausible abiotic mechanisms. In this study, we investigate the formation of amide bonds between amino acids within highly supersaturated aerosol droplets containing dicyandiamide (DCD), a cyanide derivative potentially present on primordial Earth. Metastable states, i.e. supersaturation, within individual micron-sized droplets are studied using both an optical trap and a linear quadrupole electrodynamic balance. When irradiated with intense visible light, amide bond formation is observed to occur and can be monitored using vibrational bands in Raman spectra. The reaction rate is found to be strongly influenced by droplet size and kinetic modelling suggests that it is driven by the photochemical product of a DCD self-reaction. Our results highlight the potential of atmospheric aerosol particles as reaction environments for peptide synthesis and have potential implications for the prebiotic chemistry of early Earth.

2.
J Phys Chem A ; 126(1): 109-118, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34964637

RESUMO

An optical trapping cell that is capable of suspending particles using two counter-propagating beams in a temperature-controlled environment is reported here. With this dual-beam optical trap, we are able to hold single micron-sized droplets at temperatures down to 253 K (-20 °C) for hours at a time and in metastable (supercooled) states. As particles are trapped at the shared focal points of two intense beams, strong cavity-enhanced Raman scattering (CERS) is observed and allows for high precision measurements of physical properties. Here, the evaporation of highly oxygenated organic systems was monitored using CERS and was used to determine temperature-dependent vapor pressures and enthalpies of vaporization. The wavelength- and temperature-dependent optical properties were also simultaneously retrieved using CERS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA