Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34931244

RESUMO

Maintaining proper epithelial cell density is essential for the survival of multicellular organisms. Although regulation of cell density through apoptosis is well known, its mechanistic details remain elusive. Here, we report the involvement of membrane-anchored phosphatase of regenerating liver (PRL), originally known for its role in cancer malignancy, in this process. In epithelial Madin-Darby canine kidney cells, upon confluence, doxycycline-induced expression of PRL upregulated apoptosis, reducing cell density. This could be circumvented by artificially reducing cell density via stretching the cell-seeded silicon chamber. Moreover, small interfering RNA-mediated knockdown of endogenous PRL blocked apoptosis, leading to greater cell density. Mechanistically, PRL promoted apoptosis by upregulating the translation of E-cadherin and activating the TGF-ß pathway. Morpholino-mediated inhibition of PRL expression in zebrafish embryos caused developmental defects, with reduced apoptosis and increased epithelial cell density during convergent extension. Overall, this study revealed a novel role for PRL in regulating density-dependent apoptosis in vertebrate epithelia. This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas Tirosina Fosfatases , Peixe-Zebra , Animais , Apoptose/genética , Contagem de Células , Cães , Humanos , Fígado , Células Madin Darby de Rim Canino , Proteínas de Neoplasias , Proteínas Tirosina Fosfatases/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...