Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 38(2): 530-532, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34406368

RESUMO

SUMMARY: We present ksrates, a user-friendly command-line tool to position ancient whole-genome duplication events with respect to speciation events in a phylogeny by comparing paralog and ortholog KS distributions derived from genomic or transcriptomic sequences, while adjusting for substitution rate differences among the lineages involved. AVAILABILITY AND IMPLEMENTATION: ksrates is implemented in Python 3 and as a Nextflow pipeline. The source code, Singularity and Docker containers, documentation and tutorial are available via https://github.com/VIB-PSB/ksrates. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Duplicação Gênica , Genoma , Software , Genômica , Filogenia
3.
Nature ; 577(7788): 79-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853069

RESUMO

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Assuntos
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análise
4.
Gigascience ; 8(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816089

RESUMO

BACKGROUND: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. FINDINGS: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. CONCLUSIONS: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.


Assuntos
Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas/métodos , Pyrus/genética , Tamanho do Genoma , Haploidia , Anotação de Sequência Molecular , Melhoramento Vegetal , Análise de Sequência de DNA , Sintenia
6.
Nat Plants ; 4(2): 82-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29379155

RESUMO

Gnetophytes are an enigmatic gymnosperm lineage comprising three genera, Gnetum, Welwitschia and Ephedra, which are morphologically distinct from all other seed plants. Their distinctiveness has triggered much debate as to their origin, evolution and phylogenetic placement among seed plants. To increase our understanding of the evolution of gnetophytes, and their relation to other seed plants, we report here a high-quality draft genome sequence for Gnetum montanum, the first for any gnetophyte. By using a novel genome assembly strategy to deal with high levels of heterozygosity, we assembled >4 Gb of sequence encoding 27,491 protein-coding genes. Comparative analysis of the G. montanum genome with other gymnosperm genomes unveiled some remarkable and distinctive genomic features, such as a diverse assemblage of retrotransposons with evidence for elevated frequencies of elimination rather than accumulation, considerable differences in intron architecture, including both length distribution and proportions of (retro) transposon elements, and distinctive patterns of proliferation of functional protein domains. Furthermore, a few gene families showed Gnetum-specific copy number expansions (for example, cellulose synthase) or contractions (for example, Late Embryogenesis Abundant protein), which could be connected with Gnetum's distinctive morphological innovations associated with their adaptation to warm, mesic environments. Overall, the G. montanum genome enables a better resolution of ancestral genomic features within seed plants, and the identification of genomic characters that distinguish Gnetum from other gymnosperms.


Assuntos
Cycadopsida/genética , Evolução Molecular , Genoma de Planta/genética , Gnetum/genética , Cycadopsida/fisiologia , Variações do Número de Cópias de DNA , Elementos de DNA Transponíveis/genética , Desidratação , Duplicação Gênica , Genômica , Gnetum/fisiologia , Íntrons/genética , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/fisiologia , Domínios Proteicos , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética , Sementes/fisiologia
7.
Proc Natl Acad Sci U S A ; 114(44): E9413-E9422, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078332

RESUMO

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.


Assuntos
Vias Biossintéticas/genética , Genoma de Planta/genética , Óleos/metabolismo , Olea/genética , Evolução Biológica , Ácidos Graxos Dessaturases/genética , Expressão Gênica/genética , Ácidos Linoleicos/genética , Olea/metabolismo , Ácido Oleico/genética , RNA Interferente Pequeno/genética
8.
Nature ; 549(7672): 379-383, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902843

RESUMO

Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Orchidaceae/genética , Filogenia , Genes de Plantas/genética , Orchidaceae/anatomia & histologia , Orchidaceae/classificação , Transcriptoma
9.
PLoS One ; 12(9): e0184454, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886111

RESUMO

Contrary to the many whole genome duplication events recorded for angiosperms (flowering plants), whole genome duplications in gymnosperms (non-flowering seed plants) seem to be much rarer. Although ancient whole genome duplications have been reported for most gymnosperm lineages as well, some are still contested and need to be confirmed. For instance, data for ginkgo, but particularly cycads have remained inconclusive so far, likely due to the quality of the data available and flaws in the analysis. We extracted and sequenced RNA from both the cycad Encephalartos natalensis and Ginkgo biloba. This was followed by transcriptome assembly, after which these data were used to build paralog age distributions. Based on these distributions, we identified remnants of an ancient whole genome duplication in both cycads and ginkgo. The most parsimonious explanation would be that this whole genome duplication event was shared between both species and had occurred prior to their divergence, about 300 million years ago.


Assuntos
Cycadopsida/genética , Duplicação Gênica , Genoma de Planta , Genômica , Cycadopsida/classificação , Perfilação da Expressão Gênica , Genômica/métodos , Ginkgo biloba/genética , Filogenia , Transcriptoma
10.
Sci Adv ; 3(7): e1603195, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28695205

RESUMO

Whole-genome duplications (WGDs) or polyploidy events have been studied extensively in plants. In a now widely cited paper, Jiao et al. presented evidence for two ancient, ancestral plant WGDs predating the origin of flowering and seed plants, respectively. This finding was based primarily on a bimodal age distribution of gene duplication events obtained from molecular dating of almost 800 phylogenetic gene trees. We reanalyzed the phylogenomic data of Jiao et al. and found that the strong bimodality of the age distribution may be the result of technical and methodological issues and may hence not be a "true" signal of two WGD events. By using a state-of-the-art molecular dating algorithm, we demonstrate that the reported bimodal age distribution is not robust and should be interpreted with caution. Thus, there exists little evidence for two ancient WGDs in plants from phylogenomic dating.


Assuntos
Evolução Molecular , Plantas/química , Poliploidia , Genes de Plantas , Genoma de Planta , Genômica , Filogenia , Plantas/classificação
11.
Curr Opin Plant Biol ; 30: 62-9, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26894611

RESUMO

Fifteen years into sequencing entire plant genomes, more than 30 paleopolyploidy events could be mapped on the tree of flowering plants (and many more when also transcriptome data sets are considered). While some genome duplications are very old and have occurred early in the evolution of dicots and monocots, or even before, others are more recent and seem to have occurred independently in many different plant lineages. Strikingly, a majority of these duplications date somewhere between 55 and 75 million years ago (mya), and thus likely correlate with the K/Pg boundary. If true, this would suggest that plants that had their genome duplicated at that time, had an increased chance to survive the most recent mass extinction event, at 66mya, which wiped out a majority of plant and animal life, including all non-avian dinosaurs. Here, we review several processes, both neutral and adaptive, that might explain the establishment of polyploid plants, following the K/Pg mass extinction.


Assuntos
Genoma de Planta/genética , Evolução Biológica , Evolução Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliploidia
12.
Nature ; 530(7590): 331-5, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814964

RESUMO

Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals unique insights into the genomic losses and gains involved in achieving the structural and physiological adaptations required for its marine lifestyle, arguably the most severe habitat shift ever accomplished by flowering plants. Key angiosperm innovations that were lost include the entire repertoire of stomatal genes, genes involved in the synthesis of terpenoids and ethylene signalling, and genes for ultraviolet protection and phytochromes for far-red sensing. Seagrasses have also regained functions enabling them to adjust to full salinity. Their cell walls contain all of the polysaccharides typical of land plants, but also contain polyanionic, low-methylated pectins and sulfated galactans, a feature shared with the cell walls of all macroalgae and that is important for ion homoeostasis, nutrient uptake and O2/CO2 exchange through leaf epidermal cells. The Z. marina genome resource will markedly advance a wide range of functional ecological studies from adaptation of marine ecosystems under climate warming, to unravelling the mechanisms of osmoregulation under high salinities that may further inform our understanding of the evolution of salt tolerance in crop plants.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma de Planta/genética , Água do Mar , Zosteraceae/genética , Aclimatação/genética , Parede Celular/química , Etilenos/biossíntese , Duplicação Gênica , Genes de Plantas/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Oceanos e Mares , Osmorregulação/genética , Filogenia , Folhas de Planta/metabolismo , Estômatos de Plantas/genética , Pólen/metabolismo , Salinidade , Tolerância ao Sal/genética , Alga Marinha/genética , Terpenos/metabolismo
13.
J Hered ; 101 Suppl 1: S142-57, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20421324

RESUMO

Theoretical investigations of the advantages of sex have tended to treat the genetic architecture of organisms as static and have not considered that genetic architecture might coevolve with reproductive mode. As a result, some potential advantages of sex may have been missed. Using a gene network model, we recently showed that recombination imposes selection for robustness to mutation and that negative epistasis can evolve as a by-product of this selection. These results motivated a detailed exploration of the mutational deterministic hypothesis, a hypothesis in which the advantage of sex depends critically on epistasis. We found that sexual populations do evolve higher mean fitness and lower genetic load than asexual populations at equilibrium, and, under moderate stabilizing selection and large population size, these equilibrium sexual populations resist invasion by asexuals. However, we found no evidence that these long- and short-term advantages to sex were explained by the negative epistasis that evolved in our experiments. The long-term advantage of sex was that sexual populations evolved a lower deleterious mutation rate, but this property was not sufficient to account for the ability of sexual populations to resist invasion by asexuals. The ability to resist asexual invasion was acquired simultaneously with an increase in recombinational robustness that minimized the cost of sex. These observations provide the first direct evidence that sexual reproduction does indeed select for conditions that favor its own maintenance. Furthermore, our results highlight the importance of considering a dynamic view of the genetic architecture to understand the evolution of sex and recombination.


Assuntos
Evolução Biológica , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Modelos Genéticos , Recombinação Genética/genética , Seleção Genética , Sexo , Simulação por Computador , Aptidão Genética/genética , Mutação/genética
14.
Evol Dev ; 10(5): 514-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18803768
15.
Proc Biol Sci ; 274(1619): 1741-50, 2007 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-17472908

RESUMO

The evolution of life on earth has been characterized by generalized long-term increases in phenotypic complexity. Although natural selection is a plausible cause for these trends, one alternative hypothesis--generative bias--has been proposed repeatedly based on theoretical considerations. Here, we introduce a computational model of a developmental system and use it to test the hypothesis that long-term increasing trends in phenotypic complexity are caused by a generative bias towards greater complexity. We use our model to generate random organisms with different levels of phenotypic complexity and analyse the distributions of mutational effects on complexity. We show that highly complex organisms are easy to generate but there are trade-offs between different measures of complexity. We also find that only the simplest possible phenotypes show a generative bias towards higher complexity, whereas phenotypes with high complexity display a generative bias towards lower complexity. These results suggest that generative biases alone are not sufficient to explain long-term evolutionary increases in phenotypic complexity. Rather, our finding of a generative bias towards average complexity argues for a critical role of selective biases in driving increases in phenotypic complexity and in maintaining high complexity once it has evolved.


Assuntos
Evolução Biológica , Modelos Teóricos , Fenótipo , Seleção Genética , Divisão Celular , Linhagem da Célula , Simulação por Computador , Expressão Gênica , Genótipo , Mutação/genética
16.
Nature ; 440(7080): 87-90, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16511495

RESUMO

The mutational deterministic hypothesis for the origin and maintenance of sexual reproduction posits that sex enhances the ability of natural selection to purge deleterious mutations after recombination brings them together into single genomes. This explanation requires negative epistasis, a type of genetic interaction where mutations are more harmful in combination than expected from their separate effects. The conceptual appeal of the mutational deterministic hypothesis has been offset by our inability to identify the mechanistic and evolutionary bases of negative epistasis. Here we show that negative epistasis can evolve as a consequence of sexual reproduction itself. Using an artificial gene network model, we find that recombination between gene networks imposes selection for genetic robustness, and that negative epistasis evolves as a by-product of this selection. Our results suggest that sexual reproduction selects for conditions that favour its own maintenance, a case of evolution forging its own path.


Assuntos
Evolução Biológica , Epistasia Genética , Genes Sintéticos/genética , Modelos Genéticos , Reprodução/genética , Seleção Genética , Sexo , Animais , Drosophila melanogaster/genética , Genótipo , Mutação/genética
17.
Nature ; 433(7022): 152-6, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15650738

RESUMO

Developmental processes are thought to be highly complex, but there have been few attempts to measure and compare such complexity across different groups of organisms. Here we introduce a measure of biological complexity based on the similarity between developmental and computer programs. We define the algorithmic complexity of a cell lineage as the length of the shortest description of the lineage based on its constituent sublineages. We then use this measure to estimate the complexity of the embryonic lineages of four metazoan species from two different phyla. We find that these cell lineages are significantly simpler than would be expected by chance. Furthermore, evolutionary simulations show that the complexity of the embryonic lineages surveyed is near that of the simplest lineages evolvable, assuming strong developmental constraints on the spatial positions of cells and stabilizing selection on cell number. We propose that selection for decreased complexity has played a major role in moulding metazoan cell lineages.


Assuntos
Evolução Biológica , Linhagem da Célula , Rhabditoidea/citologia , Rhabditoidea/embriologia , Urocordados/citologia , Urocordados/embriologia , Algoritmos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Simulação por Computador , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...