Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Reprogram ; 25(5): 212-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37366790

RESUMO

Studying human somatic cell-to-neuron conversion using primary brain-derived cells as starting cell source is hampered by limitations and variations in human biopsy material. Thus, delineating the molecular variables that allow changing the identity of somatic cells, permit adoption of neuronal phenotypes, and foster maturation of induced neurons (iNs) is challenging. Based on our previous results that pericytes derived from the adult human cerebral cortex can be directly converted into iNs (Karow et al., 2018; Karow et al., 2012), we here introduce human induced pluripotent stem cell (hiPSC)-derived pericytes (hiPSC-pericytes) as a versatile and more uniform tool to study the pericyte-to-neuron conversion process. This strategy enables us to derive scalable cell numbers and allows for engineering of the starting cell population such as introducing reporter tools before differentiation into hiPSC-pericytes and subsequent iN conversion. Harvesting the potential of this approach, we established hiPSC-derived human-human neuronal cocultures that not only allow for independent manipulation of each coculture partner but also resulted in morphologically more mature iNs. In summary, we exploit hiPSC-based methods to facilitate the analysis of human somatic cell-to-neuron conversion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Reprogramação Celular , Pericitos/fisiologia , Neurônios , Diferenciação Celular/fisiologia
2.
J Biol Chem ; 299(5): 104671, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019214

RESUMO

The LINC00473 (Lnc473) gene has previously been shown to be associated with cancer and psychiatric disorders. Its expression is elevated in several types of tumors and decreased in the brains of patients diagnosed with schizophrenia or major depression. In neurons, Lnc473 transcription is strongly responsive to synaptic activity, suggesting a role in adaptive, plasticity-related mechanisms. However, the function of Lnc473 is largely unknown. Here, using a recombinant adeno-associated viral vector, we introduced a primate-specific human Lnc473 RNA into mouse primary neurons. We show that this resulted in a transcriptomic shift comprising downregulation of epilepsy-associated genes and a rise in cAMP response element-binding protein (CREB) activity, which was driven by augmented CREB-regulated transcription coactivator 1 nuclear localization. Moreover, we demonstrate that ectopic Lnc473 expression increased neuronal excitability as well as network excitability. These findings suggest that primates may possess a lineage-specific activity-dependent modulator of CREB-regulated neuronal excitability.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Neurônios , Primatas , Animais , Humanos , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Epilepsia/genética , Neurônios/metabolismo , Primatas/genética
3.
J Exp Med ; 215(9): 2247-2264, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158114

RESUMO

There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid ß (Aß) accumulation in a mouse model of Alzheimer-type Aß pathology. sTLR5Fc binds to oligomeric and fibrillar Aß with high affinity, forms complexes with Aß, and blocks Aß toxicity. Oligomeric and fibrillar Aß modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aß-selective class of biotherapy in AD.


Assuntos
Doença de Alzheimer , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Receptor 5 Toll-Like/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/imunologia , Animais , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...