Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimaging ; 25(4): 595-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25893491

RESUMO

BACKGROUND: Disability progression in multiple sclerosis (MS) remains incompletely understood. Unlike lesional measures, central nervous system atrophy has a strong correlation with disability. Theiler's murine encephalomyelitis virus infection in SJL/J mice is an established model of progressive MS. We utilized in vivo MRI to quantify brain and spinal cord atrophy in this model and analyzed the temporal relationship between atrophy and disability. METHODS: Infected and control mice were followed for 12 months. Disability was assessed periodically using rotarod assay. Volumetric MRI datasets were acquired at 7 Tesla. Ventricular volume and C4-5 spinal cord cross-sectional area measurements were performed using Analyze 10. RESULTS: At 3 months, brain atrophy reached statistical significance (P = .005). In contrast, disability did not differ until 4 months post-infection (P = .0005). Cord atrophy reached significance by 9 months (P = 0.009). By 12 months, brain atrophy resulted in 111.8% increased ventricular volume (P = .00003), while spinal cord cross-sectional area was 25.6% reduced (P = .001) among cases. CONCLUSIONS: Our results suggest that significant brain atrophy precedes and predicts the development of disability, while spinal cord atrophy occurs late and correlates with severe disability. The observed temporal relationship establishes a framework for mechanisms of disability progression and enables further investigations of their underlying substrate.


Assuntos
Encéfalo/patologia , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico , Medula Espinal/patologia , Animais , Atrofia/etiologia , Atrofia/patologia , Atrofia/fisiopatologia , Encéfalo/fisiopatologia , Progressão da Doença , Imageamento por Ressonância Magnética , Camundongos , Transtornos dos Movimentos/fisiopatologia , Medula Espinal/fisiopatologia , Estatística como Assunto
2.
PLoS One ; 7(2): e32767, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393447

RESUMO

Recent evidence in multiple sclerosis (MS) suggests that active CMV infection may result in more benign clinical disease. The goal of this pilot study was to determine whether underlying murine CMV (MCMV) infection affects the course of the Theiler's murine encephalitis virus (TMEV) induced murine model of MS. A group of eight TMEV-infected mice were co-infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome measures included (1) monthly monitoring of disability via rotarod for 8 months; (2) in vivo MRI for brain atrophy studies and (3) FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was significantly improved starting 3 months post-infection and beyond (p≤0.024). In addition, their brain atrophy was close to 30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19). A significant reduction in the proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026), while the proportion of CD45+ Mac1+ cells significantly increased (p = 0.003). There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17) while CD8 and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development of demyelination and may be utilized for the development of novel therapeutic strategies.


Assuntos
Infecções por Citomegalovirus/terapia , Esclerose Múltipla/virologia , Animais , Encéfalo/patologia , Complexo CD3/biossíntese , Antígenos CD8/biossíntese , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/virologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/virologia , Feminino , Citometria de Fluxo/métodos , Sistema Imunitário , Inflamação , Antígenos Comuns de Leucócito/biossíntese , Camundongos , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Reprodutibilidade dos Testes , Fatores de Tempo
3.
J Neuroinflammation ; 9: 60, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22452799

RESUMO

BACKGROUND: The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB) disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS) model results in severe central nervous system (CNS) vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. METHODS: PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI) in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. RESULTS: C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of gadolinium-enhanced, T1-weighted MRI, and became moribund in this model system. CONCLUSION: C57BL/6 mice are highly susceptible to microhemorrhage formation, severe CNS vascular permeability and morbidity compared to the 129 SvIm mouse. This susceptibility is transferable with the bone marrow compartment, demonstrating that hematopoietic factors are responsible for the onset of brain microhemorrhage and vascular permeability in immune-mediated fatal BBB disruption.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Infecções por Cardiovirus/complicações , Hemorragias Intracranianas/etiologia , Animais , Astrócitos/efeitos dos fármacos , Barreira Hematoencefálica , Transplante de Medula Óssea/métodos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Proteínas do Capsídeo/efeitos adversos , Modelos Animais de Doenças , Citometria de Fluxo , Fluoresceína-5-Isotiocianato/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hematínicos , Hemorragias Intracranianas/cirurgia , Hemorragias Intracranianas/virologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos , Atividade Motora/fisiologia , Teste de Desempenho do Rota-Rod , Theilovirus/patogenicidade , Proteínas Virais/efeitos adversos
4.
PLoS One ; 7(2): e31459, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348089

RESUMO

MRI is sensitive to tissue pathology in multiple sclerosis (MS); however, most lesional MRI findings have limited correlation with disability. Chronic T1 hypointense lesions or "T1 black holes" (T1BH), observed in a subset of MS patients and thought to represent axonal damage, show moderate to strong correlation with disability. The pathogenesis of T1BH remains unclear. We previously reported the first and as of yet only model of T1BH formation in the Theiler's murine encephalitis virus induced model of acute CNS neuroinflammation induced injury, where CD8 T-cells are critical mediators of axonal damage and related T1BH formation. The purpose of this study was to further analyze the role of CD8 and CD4 T-cells through adoptive transfer experiments and to determine if the relevant CD8 T-cells are classic epitope specific lymphocytes or different subsets. C57BL/6 mice were used as donors and RAG-1 deficient mice as hosts in our adoptive transfer experiments. In vivo 3-dimensional MRI images were acquired using a 7 Tesla small animal MRI system. For image analysis, we used semi-automated methods in Analyze 9.1; transfer efficiency was monitored using FACS of brain infiltrating lymphocytes. Using a peptide depletion method, we demonstrated that the majority of CD8 T-cells are classic epitope specific cytotoxic cells. CD8 T-cell transfer successfully restored the immune system's capability to mediate T1BH formation in animals that lack adaptive immune system, whereas CD4 T-cell transfer results in an attenuated phenotype with significantly less T1BH formation. These findings demonstrate contrasting roles for these cell types, with additional evidence for a direct pathogenic role of CD8 T-cells in our model of T1 black hole formation.


Assuntos
Linfócitos T CD8-Positivos/patologia , Imageamento por Ressonância Magnética , Esclerose Múltipla/patologia , Theilovirus , Transferência Adotiva , Animais , Axônios/patologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Sistema Nervoso Central/patologia , Inflamação , Camundongos , Modelos Animais
5.
J Neurol Sci ; 282(1-2): 34-8, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19162280

RESUMO

Advanced MRI studies demonstrated several diffuse non-lesional features in multiple sclerosis, including changes detectable in gray matter areas. Standard T2 weighted MRI scans of deep gray matter structures, including the thalamus, caudate, putamen, dentate nuclei often demonstrate hypointensity. T2 hypointensity has been shown to correlate with cognitive, neuropsychiatric and motor dysfunction. The exact pathogenesis of this MRI phenomenon remains unknown. In this manuscript, we demonstrate the first known MS animal model of deep gray matter T2 hypointensity. In TMEV infected SJL/J mice, gradual development of thalamic T2 hypointensity was noted over the disease course. Quantitative analysis of the hypointensity demonstrated a strong correlation between the degree of T2 hypointensity and rotarod detectable disability. We propose that this model will allow mechanistic studies investigating the pathogenesis and significance of deep gray matter T2 hypointensity in MS.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/psicologia , Animais , Infecções por Cardiovirus , Modelos Animais de Doenças , Progressão da Doença , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Camundongos , Atividade Motora , Índice de Gravidade de Doença , Tálamo/patologia , Theilovirus , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...