Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8255-8265, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405518

RESUMO

Cellulose-based materials are gaining increasing attention in the packaging industry as sustainable packaging material alternatives. Lignocellulosic polymers with high quantities of surface hydroxyls are inherently hydrophilic and hygroscopic, making them moisture-sensitive, which has been retarding the utilization of cellulosic materials in applications requiring high moisture resistance. Herein, we produced lightweight all-cellulose fiber foam films with improved water tolerance. The fiber foams were modified with willow bark extract (WBE) and alkyl ketene dimer (AKD). AKD improved the water stability, while the addition of WBE was found to improve the dry strength of the fiber foam films and bring additional functionalities, that is, antioxidant and ultraviolet protection properties, to the material. Additionally, WBE and AKD showed a synergistic effect in improving the hydrophobicity and water tolerance of the fiber foam films. Nuclear magnetic resonance (NMR) spectroscopy indicated that the interactions among WBE, cellulose, and AKD were physical, with no formation of covalent bonds. The findings of this study broaden the possibilities to utilize cellulose-based materials in high-value active packaging applications, for instance, for pharmaceutical and healthcare products or as water-resistant coatings for textiles, besides bulk packaging materials.

2.
Nat Commun ; 13(1): 1814, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383163

RESUMO

Microplastics accumulate in various aquatic organisms causing serious health issues, and have raised concerns about human health by entering our food chain. The recovery techniques for the most challenging colloidal fraction are limited, even for analytical purposes. Here we show how a hygroscopic nanocellulose network acts as an ideal capturing material even for the tiniest nanoplastic particles. We reveal that the entrapment of particles from aqueous environment is primarily a result of the network's hygroscopic nature - a feature which is further intensified with the high surface area of nanocellulose. We broaden the understanding of the mechanism for particle capture by investigating the influence of pH and ionic strength on the adsorption behaviour. We determine the nanoplastic binding mechanisms using surface sensitive methods, and interpret the results with the random sequential adsorption (RSA) model. These findings hold potential for the explicit quantification of the colloidal nano- and microplastics from different aqueous environments, and eventually, provide solutions to collect them directly on-site where they are produced.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Organismos Aquáticos , Humanos , Plásticos , Poluentes Químicos da Água/análise
3.
Soft Matter ; 18(10): 2060-2071, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35199113

RESUMO

Plants, animals, and humans use camouflage to blend in with their surroundings. The camouflage is achieved with different combinations of colors, patterns, and morphologies. In stealth applications, the simplest camouflage uses textiles colored similarly to the environment to create an illusion. However, often, visible light range camouflage is not enough since the multispectral detection technologies of today are readily utilized for identification. Foams can be created with a straightforward fabricating process, and lightweight material exhibits good thermal insulation properties, providing stealth in the infrared light region. Herein, we produce cellulosic wet foams from surfactant and bleached pulp or cellulose nanofibrils. The visible light camouflage is created with green microalgae, Chlorella vulgaris, and brown kraft lignin, which also stabilized the foams. The thermal and spectral camouflage performance of foams was influenced by the cellulose content as well as the stability and water content of foams. Overall, these results give insight into how stability impacts the thermal and spectral properties of wet foams and provide a solid base for further material development to improve camouflage performance. While there is plenty of data on dry foams, the functional behavior of wet foams is currently not well known. Our method, using plant-based components can be exploited in a variety of other applications where simplicity and scalability are important.


Assuntos
Chlorella vulgaris , Microalgas , Celulose , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...