Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(5): 1106-1108, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428392

RESUMO

RNA polymerases (RNAPs) control the first step of gene expression in all forms of life by transferring genetic information from DNA to RNA, a process known as transcription. In this issue of Cell, Webster et al. and Wu et al. report three-dimensional structures of RNAP complexes from chloroplasts.


Assuntos
RNA Polimerases Dirigidas por DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Plastídeos/enzimologia
2.
Nucleic Acids Res ; 51(20): 11386-11400, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855670

RESUMO

Riboregulators such as riboswitches and RNA thermometers provide simple, protein-independent tools to control gene expression at the post-transcriptional level. In bacteria, RNA thermometers regulate protein synthesis in response to temperature shifts. Thermometers outside of the bacterial world are rare, and in organellar genomes, no RNA thermometers have been identified to date. Here we report the discovery of an RNA thermometer in a chloroplast gene of the unicellular green alga Chlamydomonas reinhardtii. The thermometer, residing in the 5' untranslated region of the psaA messenger RNA forms a hairpin-type secondary structure that masks the Shine-Dalgarno sequence at 25°C. At 40°C, melting of the secondary structure increases accessibility of the Shine-Dalgarno sequence to initiating ribosomes, thus enhancing protein synthesis. By targeted nucleotide substitutions and transfer of the thermometer into Escherichia coli, we show that the secondary structure is necessary and sufficient to confer the thermometer properties. We also demonstrate that the thermometer provides a valuable tool for inducible transgene expression from the Chlamydomonas plastid genome, in that a simple temperature shift of the algal culture can greatly increase recombinant protein yields.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Genoma de Cloroplastos , Riboswitch , RNA/química , Temperatura , Termômetros , Chlamydomonas/genética , Chlamydomonas/metabolismo , Biossíntese de Proteínas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Riboswitch/genética
3.
Mol Biol Evol ; 39(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36227729

RESUMO

RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Edição de RNA , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , RNA , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Nat Commun ; 13(1): 5856, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195597

RESUMO

Antimicrobial peptides (AMPs) kill microbes or inhibit their growth and are promising next-generation antibiotics. Harnessing their full potential as antimicrobial agents will require methods for cost-effective large-scale production and purification. Here, we explore the possibility to exploit the high protein synthesis capacity of the chloroplast to produce AMPs in plants. Generating a large series of 29 sets of transplastomic tobacco plants expressing nine different AMPs as fusion proteins, we show that high-level constitutive AMP expression results in deleterious plant phenotypes. However, by utilizing inducible expression and fusions to the cleavable carrier protein SUMO, the cytotoxic effects of AMPs and fused AMPs are alleviated and plants with wild-type-like phenotypes are obtained. Importantly, purified AMP fusion proteins display antimicrobial activity independently of proteolytic removal of the carrier. Our work provides expression strategies for the synthesis of toxic polypeptides in chloroplasts, and establishes transplastomic plants as efficient production platform for antimicrobial peptides.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Proteínas de Transporte , Plantas , Plastídeos/genética
5.
Mol Plant ; 15(7): 1176-1191, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35619559

RESUMO

Expression of double-stranded RNAs in plastids offers great potential for the efficient control of chewing insects. However, many insect pests do not consume plant tissue but rather feed on the host plant by sucking sap from the vascular system. Whether or not plastid-mediated RNA interference (RNAi) can be employed to control sap-sucking insects is unknown. Here, we show that five species of sap-sucking hemipteran insects acquire plastid RNA upon feeding on plants. We generated both nuclear transgenic and transplastomic tobacco plants expressing double-stranded RNAs targeting the MpDhc64C gene, a newly identified efficient target gene of RNAi whose silencing causes lethality to the green peach aphid Myzus persicae. In a whole-plant bioassay, transplastomic plants exhibited significant resistance to aphids, as evidenced by reduced insect survival, impaired fecundity, and decreased weight of survivors. The protective effect was comparable with that conferred by the best-performing nuclear transgenic plants. We found that the proportion of aphids on mature leaves of transplastomic plants was significantly lower compared with that of nuclear transgenic plants. When aphids were allowed to infest only the mature leaves, transplastomic plants grew significantly faster and were overall better protected from the pest compared with nuclear transgenic plants. When monitored by electrical-penetration-graph analyses and aphid avoidance response experiments, the insects displayed remarkable alterations in feeding behavior, which was different in nuclear transgenic and transplastomic plants, likely reflecting specific avoidance strategies to toxic RNA molecules. Taken together, our study demonstrates that plastid-mediated RNAi provides an efficient strategy for controlling at least some sap-sucking insect pests, even though there is most likely no or only very little chloroplast RNA in the sap.


Assuntos
Afídeos , Animais , Afídeos/genética , Insetos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(15): e2120081119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380896

RESUMO

Plastid-mediated RNA interference (PM-RNAi) has emerged as a promising strategy for pest control. Expression from the plastid genome of stable double-stranded RNAs (dsRNAs) targeted against essential insect genes can effectively control some herbivorous beetles, but little is known about the efficacy of the transplastomic approach in other groups of pest insects, especially nonchewing insects that do not consume large amounts of leaf material. Here we have investigated the susceptibility of the western flower thrip (WFT, Frankliniella occidentalis), a notorious pest in greenhouses and open fields, to PM-RNAi. We show that WFTs ingest chloroplasts and take up plastid-expressed dsRNAs. We generated a series of transplastomic tobacco plants expressing dsRNAs and hairpin RNAs (hpRNAs) targeted against four essential WFT genes. Unexpectedly, we discovered plastid genome instability in transplastomic plants expressing hpRNAs, suggesting that dsRNA cassettes are preferable over hpRNA cassettes when designing PM-RNAi strategies. Feeding studies revealed that, unlike nuclear transgenic plants, transplastomic plants induced a potent RNAi response in WFTs, causing efficient suppression of the targeted genes and high insect mortality. Our study extends the application range of PM-RNAi technology to an important group of nonchewing insects, reveals design principles for the construction of dsRNA-expressing transplastomic plants, and provides an efficient approach to control one of the toughest insect pests in agriculture and horticulture.


Assuntos
Controle Biológico de Vetores , Plastídeos , Interferência de RNA , RNA de Plantas , Tisanópteros , Animais , Controle Biológico de Vetores/métodos , Plastídeos/genética , RNA de Cadeia Dupla , RNA de Plantas/genética , Tisanópteros/genética , Nicotiana/genética , Nicotiana/parasitologia
7.
OMICS ; 16(4): 160-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22433077

RESUMO

A large number of studies have investigated the relationship between different forms of abiotic stress and antioxidants. However, misconceptions and technical flaws often affect studies on this important topic. Reactive oxygen species (ROS) generated under stress conditions should not be considered just as potential threats, because they are essential components of the signaling mechanism inducing plant defenses. Similarly, the complexity of the antioxidant system should be considered, to avoid misleading oversimplifications. Recent literature is discussed, highlighting the importance of accurate experimental setups for obtaining reliable results in this delicate field of research. A tentative "troubleshooting guide" is provided to help researchers interested in improving the quality of their work on the role of antioxidants in plant stress resistance. Significant advancements in the field could be reached with the development of antioxidomics, defined here as a new branch of research at the crossroads of other disciplines including metabolomics and proteomics, studying the complex relationship among antioxidants and their functions.


Assuntos
Antioxidantes/metabolismo , Plantas/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...