Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948832

RESUMO

Introduction: Morphometric similarity is a recently developed neuroimaging phenotype of inter-regional connectivity by quantifying the similarity of a region to other regions based on multiple MRI parameters. Altered average morphometric similarity has been reported in psychotic disorders at the group level, with considerable heterogeneity across individuals. We used normative modeling to address cross-sectional and longitudinal inter-individual heterogeneity of morphometric similarity in health and schizophrenia. Methods: Morphometric similarity for 62 cortical regions was obtained from baseline and follow-up T1-weighted scans of healthy individuals and patients with chronic schizophrenia. Cortical regions were classified into seven predefined brain functional networks. Using Bayesian Linear Regression and taking into account age, sex, image quality and scanner, we trained and validated normative models in healthy controls from eleven datasets (n = 4310). Individual deviations from the norm (z-scores) in morphometric similarity were computed for each participant for each network and region at both timepoints. A z-score ≧ than 1.96 was considered supra-normal and a z-score ≦ -1.96 infra-normal. As a longitudinal metric, we calculated the change over time of the total number of infra- or supra-normal regions per participant. Results: At baseline, patients with schizophrenia had decreased morphometric similarity of the default mode network and increased morphometric similarity of the somatomotor network when compared with healthy controls. The percentage of patients with infra- or supra-normal values for any region at baseline and follow-up was low (<6%) and did not differ from healthy controls. Mean intra-group changes over time in the total number of infra- or supra-normal regions were small in schizophrenia and healthy control groups (<1) and there were no significant between-group differences. Conclusions: In a case-control setting, a decrease of morphometric similarity within the default mode network may be a robust finding implicated in schizophrenia. However, normative modeling suggests that significant reductions and changes over time of regional morphometric similarity are evident only in a minority of patients.

2.
J Neurosci ; 42(18): 3704-3715, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318286

RESUMO

Scaling between subcomponents of folding and total brain volume (TBV) in healthy individuals (HIs) is allometric. It is unclear whether this is true in schizophrenia (SZ) or first-episode psychosis (FEP). This study confirmed normative allometric scaling norms in HIs using discovery and replication samples. Cross-sectional and longitudinal diagnostic differences in folding subcomponents were then assessed using an allometric framework. Structural imaging from a longitudinal (Sample 1: HI and SZ, nHI Baseline = 298, nSZ Baseline = 169, nHI Follow-up = 293, nSZ Follow-up = 168, totaling 1087 images, all individuals ≥ 2 images, age 16-69 years) and a cross-sectional sample (Sample 2: nHI = 61 and nFEP = 89, age 10-30 years), all human males and females, is leveraged to calculate global folding and its nested subcomponents: sulcation index (SI, total sulcal/cortical hull area) and determinants of sulcal area: sulcal length and sulcal depth. Scaling of SI, sulcal area, and sulcal length with TBV in SZ and FEP was allometric and did not differ from HIs. Longitudinal age trajectories demonstrated steeper loss of SI and sulcal area through adulthood in SZ. Longitudinal allometric analysis revealed that both annual change in SI and sulcal area was significantly stronger related to change in TBV in SZ compared with HIs. Our results detail the first evidence of the disproportionate contribution of changes in SI and sulcal area to TBV changes in SZ. Longitudinal allometric analysis of sulcal morphology provides deeper insight into lifespan trajectories of cortical folding in SZ.SIGNIFICANCE STATEMENT Psychotic disorders are associated with deficits in cortical folding and brain size, but we lack knowledge of how these two morphometric features are related. We leverage cross-sectional and longitudinal samples in which we decompose folding into a set of nested subcomponents: sulcal and hull area, and sulcal depth and length. We reveal that, in both schizophrenia and first-episode psychosis, (1) scaling of subcomponents with brain size is different from expected scaling laws and (2) caution is warranted when interpreting results from traditional methods for brain size correction. Longitudinal allometric scaling points to loss of sulcal area as a principal contributor to loss of brain size in schizophrenia. These findings advance the understanding of cortical folding atypicalities in psychotic disorders.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Adolescente , Adulto , Idoso , Encéfalo/anatomia & histologia , Córtex Cerebral , Criança , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...