Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(24): 17042-17047, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836386

RESUMO

We report the photoelectron spectrum of the pyridyl radical (C5H4N), a species of interest in astrochemistry and combustion. The radicals were produced via hydrogen abstraction in a fluorine discharge and ionized with synchrotron radiation. Mass-selected slow photoelectron spectra of the products were obtained from photoelectron-photoion coincidence spectra. A Franck-Condon simulation based on computed geometries and vibrational frequencies identified contributions of the o- and p-pyridyl radicals. For the o-isomer an adiabatic ionisation energy of 7.70 eV was obtained, in excellent agreement with a computed value of 7.72 eV. The spectrum of o-pyridyl is characterized by a long progression in an in-plane bending mode and the N-C stretch that contains the radical site.

2.
Chemphyschem ; 25(13): e202400208, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38594204

RESUMO

Photoionization and dissociative photoionization of acetaldehyde (CH3CHO) in the 10.0-13.7 eV energy range are studied by using synchrotron radiation double imaging photoelectron photoion coincidence spectroscopy (i2PEPICO). The X2A' and A2A" electronic states of CH3CHO+ as well as the Franck-Condon gap region between these two states have been populated with several vibrational sequences and assigned in the high-resolution slow photoelectron spectrum (SPES). The adiabatic ionization energies (AIEs) of the X2A' and A2A" states are measured at 10.228±0.006 and 12.52±0.05 eV, respectively. The present results show that the X2A' state is a stable state while the A2A" state is fully dissociative to produce CH3CO+, CHO+ and CH4 + fragment ions. The 0 K appearance energies (AE0K) of CH3CO+ and CHO+ fragment ions are determined through the modeling of the breakdown diagram, i. e., AE0K(CH3CO+)=10.89±0.01 eV (including a reverse barrier of ~0.19 eV) and AE0K(CHO+)=11.54±0.05 eV. In addition, the dissociation mechanisms of CH3CHO+ including statistical dissociation, direct bond breaking and isomerization are discussed with the support of the calculated dissociation limits and transition state energies.

3.
Phys Chem Chem Phys ; 25(45): 30838-30847, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877862

RESUMO

Fluorinated species have a pivotal role in semiconductor material chemistry and some of them have been detected beyond the Earth's atmosphere. Achieving good energy accuracy on fluorinated species using quantum chemical calculations has long been a challenge. In addition, obtaining direct experimental thermochemical quantities has also proved difficult. Here, we report the threshold photoelectron and photoion yield spectra of SiF and CF radicals generated with a fluorine reactor. The spectra were analysed with the support of ab initio calculations, resulting in new experimental values for the adiabatic ionisation energies of both CF (9.128 ± 0.006 eV) and SiF (7.379 ± 0.009 eV). Using these values, the underlying thermochemical network of Active Thermochemical Tables was updated, providing further refined enthalpies of formation and dissociation energies of CF, SiF, and their cationic counterparts.

4.
Faraday Discuss ; 245(0): 327-351, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293920

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.8 kJ mol-1 to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C6H6N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to the aromatic ring of C6H6, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C6H6N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan's atmosphere. In all conditions the ring-contraction channel leading to C5H5 (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to o-C6H5N (o-N-cycloheptatriene radical) + H, C4H4N (pyrrolyl) + C2H2 (acetylene), C5H5CN (cyano-cyclopentadiene) + H, and p-C6H5N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10-10 cm3 s-1 over the 50-296 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.

5.
J Phys Chem A ; 126(41): 7502-7513, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36198131

RESUMO

We present a thorough pure rotational investigation of the CH2CN radical in its ground vibrational state. Our measurements cover the millimeter and sub-millimeter wave spectral regions (79-860 GHz) using a W-band chirped-pulse instrument and a frequency multiplication chain-based spectrometer. The radical was produced in a flow cell at room temperature by H abstraction from acetonitrile using atomic fluorine. The newly recorded transitions of CH2CN (involving N″ and Ka″ up to 42 and 8, respectively) were combined with the literature data, leading to a refinement of the spectroscopic parameters of the species using a Watson S-reduced Hamiltonian. In particular, the A rotational constant and K-dependent parameters are significantly better determined than in previous studies. The present model, which reproduces all experimental transitions to their experimental accuracy, allows for confident searches for the radical in cold to warm environments of the interstellar medium.

6.
ACS Earth Space Chem ; 6(10): 2305-2321, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36303717

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.

7.
J Am Chem Soc ; 144(40): 18518-18525, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174230

RESUMO

We provide compelling experimental and theoretical evidence for the transition state nature of the cyclopropyl cation. Synchrotron photoionization spectroscopy employing coincidence techniques together with a novel simulation based on high-accuracy ab initio calculations reveal that the cation is unstable via its allowed disrotatory ring-opening path. The ring strains of the cation and the radical are similar, but both ring opening paths for the radical are forbidden when the full electronic symmetries are considered. These findings are discussed in light of the early predictions by Longuet-Higgins alongside Woodward and Hoffman; we also propose a simple phase space explanation for the appearance of the cyclopropyl photoionization spectrum. The results of this work allow the refinement of the cyclopropane C-H bond dissociation energy, in addition to the cyclopropyl radical and cation cyclization energies, via the Active Thermochemical Tables approach.

8.
J Chem Phys ; 157(1): 014303, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803794

RESUMO

The first measurement of the photoelectron spectrum of the silylidyne free radical, SiH, is reported between 7 and 10.5 eV. Two main photoionizing transitions involving the neutral ground state, X+1Σ+ ← X2Π and a+3Π â† X2Π, are assigned by using ab initio calculations. The corresponding adiabatic ionization energies are derived, IEad(X+1Σ+) = 7.934(5) eV and IEad(a+3Π) = 10.205(5) eV, in good agreement with our calculated values and the previous determination by Berkowitz et al. [J. Chem. Phys. 86, 1235 (1987)] from a photoionization mass spectrometric study. The photoion yield of SiH recorded in this work exhibits a dense autoionization landscape similar to that observed in the case of the CH free radical [Gans et al., J. Chem. Phys. 144, 204307 (2016)].

9.
J Phys Chem A ; 126(24): 3903-3913, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35687018

RESUMO

Atomic oxygen in its first excited singlet state, O(1D), is an important species in the photochemistry of several planetary atmospheres and has been predicted to be a potentially important reactive species on interstellar ices. Here, we report the results of a kinetic study of the reactions of O(1D) with methanol, CH3OH, and acetonitrile, CH3CN, over the 50-296 K temperature range. A continuous supersonic flow reactor is used to attain these low temperatures coupled with pulsed laser photolysis and pulsed laser-induced fluorescence to generate and monitor O(1D) atoms, respectively. Secondary experiments examining the atomic hydrogen product channels of these reactions are also performed, through laser-induced fluorescence measurements of H(2S) atom formation. On the kinetic side, the rate constants for these reactions are seen to be large (>2 × 10-10 cm3 s-1) and consistent with barrierless reactions, although they display contrasting dependences as a function of temperature. On the product formation side, both reactions are seen to yield non-negligible quantities of atomic hydrogen. For the O(1D) + CH3OH reaction, the derived yields are in good agreement with the conclusions of previous experimental and theoretical works. For the O(1D) + CH3CN reaction, whose H-atom formation channels had not previously been investigated, electronic structure calculations of several new product formation channels are performed to explain the observed H-atom yields. These calculations demonstrate the barrierless and exothermic nature of the relevant exit channels, confirming that atomic hydrogen is also an important product of the O(1D) + CH3CN reaction.

10.
Phys Chem Chem Phys ; 24(18): 10993-10999, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35467677

RESUMO

We report the mass-selected slow photoelectron spectra of three reactive organophosphorus species, PCH2, and the two isomers, methylenephosphine or phosphaethylene, HPCH2 and methylphosphinidine, P-CH3. All spectra were recorded by double imaging photoelectron-photoion coincidence spectroscopy (i2PEPICO) using synchrotron radiation and all species were generated in a flow reactor by the reaction of trimethyl phosphine with fluorine atoms. Adiabatic ionisation energies of 8.80 ± 0.02 eV (PCH2), 10.07 ± 0.03 eV (H-PCH2) and 8.91 ± 0.04 eV (P-CH3) were determined and the vibronic structure was simulated by calculating Franck-Condon factors from optimised structures based on quantum chemical methods. Observation of biradicalic P-CH3 isomer with its triplet ground state is surprising because it is less stable than H-PCH2.

11.
J Phys Chem A ; 126(6): 940-950, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35113561

RESUMO

The reaction between atomic carbon in its ground electronic state, C(3P), and nitrous oxide, N2O, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50-296 K range using a continuous supersonic flow reactor. C(3P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.8 nm. Additional measurements allowing the major product channels to be elucidated were also performed. On the theoretical side, statistical rate theory was used to calculate low temperature rate constants. These calculations employed the results of new electronic structure calculations of the 3A″ potential energy surface of CNNO and provided a basis to extrapolate the measured rate constants to lower temperatures and pressures. The rate constant was found to increase monotonically as the temperature falls (kC(3P)+N2O (296 K) = (3.4 ± 0.3) × 10-11 cm3 s-1), reaching a value of kC(3P)+N2O (50 K) = (7.9 ± 0.8) × 10-11 cm3 s-1 at 50 K. As current astrochemical models do not include the C + N2O reaction, we tested the influence of this process on interstellar N2O and other related species using a gas-grain model of dense interstellar clouds. These simulations predict that N2O abundances decrease significantly at intermediate times (103 - 105 years) when gas-phase C(3P) abundances are high.

12.
J Phys Chem A ; 125(28): 6122-6130, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34232644

RESUMO

VUV photoionization of the CHnI radicals (with n = 0, 1, and 2) is investigated by means of synchrotron radiation coupled with a double imaging photoion-photoelectron coincidence spectrometer. Photoionization efficiencies and threshold photoelectron spectra (TPES) for photon energies ranging between 9.2 and 12.0 eV are reported. An adiabatic ionization energy (AIE) of 8.334 ± 0.005 eV is obtained for CH2I, which is in good agreement with previous results [8.333 ± 0.015 eV, Sztáray J. Chem. Phys. 2017, 147, 013944], while for CI an AIE of 8.374 ± 0.005 eV is measured for the first time and a value of ∼8.8 eV is estimated for CHI. Ab initio calculations have been carried out for the ground state of the CH2I radical and for the ground state and excited states of the radical cation CH2I+, including potential energy curves along the C-I coordinate. Franck-Condon factors are calculated for transitions from the CH2I(X̃2B1) ground state of the neutral radical to the ground state and excited states of the radical cation. The TPES measured for the CH2I radical shows several structures that correspond to the photoionization into excited states of the radical cation and are fully assigned on the basis of the calculations. The TPES obtained for the CHI is characterized by a broad structure peaking at 9.335 eV, which could be due to the photoionization from both the singlet and the triplet states and into one or more electronic states of the cation. A vibrational progression is clearly observed in the TPES for the CI radical and a frequency for the C-I stretching mode of 760 ± 60 cm-1 characterizing the CI+ electronic ground state has been extracted.

13.
J Phys Chem A ; 125(13): 2764-2769, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33783226

RESUMO

The NH2 radical is a key component in many astrophysical environments, both in its neutral and cationic forms, being involved in the formation of complex N-bearing species. To gain insight into the photochemical processes into which it operates and to model accurately the ensuing chemical networks, the knowledge of its photoionization efficiency is required, but no quantitative determination has been carried out so far. Combining a flow-tube H-abstraction radical source, a double imaging photoelectron-photoion spectrometer, and a vacuum-ultraviolet synchrotron excitation, the absolute photoionization cross section of the amino radical has been measured in the present work for the first time at two photon energies: σionNH2(12.7 eV) = 7.8 ± 2.2 Mb and σionNH2(13.2 eV) = 7.8 ± 2.0 Mb. These values have been employed to scale the total ion yield previously recorded by Gibson et al. ( J. Chem. Phys. 1985, 83, 4319-4328). The resulting cross section curve spanning the 11.1-15.7 eV energy range will help in refining the current astrophysical models.

14.
J Phys Chem A ; 124(51): 10717-10725, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320001

RESUMO

The rates of numerous activated reactions between neutral species increase at low temperatures through quantum mechanical tunneling of light hydrogen atoms. Although tunneling processes involving molecules or heavy atoms are well known in the condensed phase, analogous gas-phase processes have never been demonstrated experimentally. Here, we studied the activated CH + CO2 → HCO + CO reaction in a supersonic flow reactor, measuring rate constants that increase rapidly below 100 K. Mechanistically, tunneling is shown to occur by CH insertion into the C-O bond, with rate calculations accurately reproducing the experimental values. To exclude the possibility of H-atom tunneling, CD was used in additional experiments and calculations. Surprisingly, the equivalent CD + CO2 reaction accelerates at low temperature as zero-point energy effects remove the barrier to product formation. In conclusion, heavy-particle tunneling effects might be responsible for the observed reactivity increase at lower temperatures for the CH + CO2 reaction, while the equivalent effect for the CD + CO2 reaction results instead from a submerged barrier with respect to reactants.

15.
Chem Commun (Camb) ; 56(99): 15525-15528, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33236739

RESUMO

The two isomers of the propylperoxy radical 1-C3H7O2 and 2-C3H7O2, together with their individual rotamers, are identified and assigned by threshold photoelectron spectroscopy with the aid of high-level theoretical computations, from which their accurate adiabatic ionization energies are derived. This study paves the way to probing elusive peroxy radicals and their isomers in advanced mass spectrometry analysis of combustion and atmospheric reactions.

16.
J Chem Phys ; 153(12): 124306, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003730

RESUMO

We report a synchrotron radiation vacuum ultraviolet photoionization study of the hydroperoxyl radical (HO2), a key reaction intermediate in combustion and atmospheric chemistry as well as astrochemistry, using double imaging photoelectron photoion coincidence spectroscopy. The HO2 radical is formed in a microwave discharge flow tube reactor through a set of reactions initiated by F atoms in a CH4/O2/He gas mixture. The high-resolution threshold photoelectron spectrum of HO2 in the 11 eV-12 eV energy range is acquired without interferences from other species and assigned with the aid of theoretically calculated adiabatic ionization energies (AIEs) and Franck-Condon factors. The three vibrational modes of the radical cation HO2 +, the H-O stretch, the H-O-O bend, and the O-O stretch, have been identified, and their individual frequencies are measured. In addition, the AIEs of the X3A″ ground state and the a1A' first excited electronic state of HO2 + are experimentally determined at 11.359 ± 0.003 eV and 11.639 ± 0.005 eV, respectively, in agreement with high-level theoretically computed results. Furthermore, the former AIE value provides validation of thermochemical networks used to extract the enthalpy of formation of the HO2 radical.

17.
J Chem Phys ; 153(7): 074308, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32828110

RESUMO

The vacuum-ultraviolet threshold photoelectron spectrum of methyl isocyanate CH3NCO has been recorded from 10.4 eV to 12 eV using synchrotron radiation and a coincidence technique allowing for a mass-discrimination of the photoelectron signal. A significant improvement is achieved over previous investigations as this experimental setup leads to a much more resolved spectrum. Ten sharp peaks and a broad feature spanning 1.2 eV were recorded. This spectrum consists of X̃+ 2A″←X̃ 1A' and Ã+ 2A'←X̃ 1A' ionizing transitions. For the former, the adiabatic ionization energy was determined experimentally to be 10.596(6) eV; for the latter, its value was estimated to be 10.759(50) eV. Seven sharp peaks could be assigned to vibrational modes of the cation X̃+ 2A″ and neutral X̃ 1A' ground electronic states involving only the NCO group atoms. Theoretical modeling of the threshold photoelectron spectrum has proven difficult as methyl isocyanate is a non-rigid molecule displaying large amplitude internal rotation of the methyl group and ∠CNC bending mode, leading to the quasi-symmetry. With the help of ab initio calculations, a theoretical model in which these two large amplitude motions are included in addition to the five small amplitude vibrational modes involving NCO group atoms is proposed. Comparison with the experimental spectrum shows that the broad feature and the strongest peak line positions are well accounted for; their intensities are also fairly well reproduced after adjusting a few parameters.

18.
J Chem Phys ; 153(3): 031101, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716172

RESUMO

We present here a synchrotron radiation vacuum ultraviolet photoionization study of the simplest alkoxy radical, CH3O, a key reaction intermediate in atmospheric and combustion chemistry. A microwave discharge fast flow tube connected to a molecular beam sampling system is employed as a chemical reactor to initiate reactions and generate radicals. The CH3O+ cation from direct ionization of the CH3O radical is detected successfully in the photoionization mass spectrum close to its ionization threshold. In addition, after identifying and removing the contribution of the 13C-isotopic formaldehyde H2 13CO with the same isobaric mass m/z = 31, the high-resolution threshold photoelectron spectrum of CH3O is obtained and assigned with the aid of calculated Franck-Condon factors. The adiabatic ionization energy of CH3O is determined at 10.701 eV with an accuracy of 0.005 eV.

19.
Phys Chem Chem Phys ; 22(25): 14026-14035, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558865

RESUMO

Electronically excited nitrogen atoms N(2D) are important species in the photochemistry of N2 based planetary atmospheres such as Titan. Despite this, few N(2D) reactions have been studied over the appropriate low temperature range. During the present work, rate constants were measured for the N(2D) + ethene (C2H4) reaction using a supersonic flow reactor at temperatures between 50 K and 296 K. Here, a chemical reaction was used to generate N(2D) atoms, which were detected directly by laser induced fluorescence in the vacuum ultraviolet wavelength region. The measured rate constants displayed very little variation as a function of temperature, with substantially larger values than those obtained in previous work. Indeed, considering an average temperature of 170 K for the atmosphere of Titan leads to a rate constant that is almost seven times larger than the currently recommended value. In parallel, electronic structure calculations were performed to provide insight into the reactive process. While earlier theoretical work at a lower level predicted the presence of a barrier for the N(2D) + C2H4 reaction, the present calculations demonstrate that two of the five doublet potential energy surfaces correlating with reagents are likely to be attractive, presenting no barriers for the perpendicular approach of the N atom to the C[double bond, length as m-dash]C bond of ethene. The measured rate constants and new product channels taken from recent dynamical investigations of this process are included in a 1D coupled ion-neutral model of Titan's atmosphere. These simulations indicate that the modeled abundances of numerous nitrogen bearing compounds are noticeably affected by these changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...