Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 20(7): 2852-2863, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150217

RESUMO

Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized. Here, experimental parameters including polymer areal chain density, lectin molecular weight, and lectin coupling buffer were systematically varied to identify parameters driving highest azlactone conversions and corresponding lectin surface densities. To introduce physical nanostructures into the attachment layer, nanopillar arrays (NPAs) of varied heights (300 and 2100 nm) were then used to provide an underlying surface template for the functional polymer layer. Capture of Escherichia coli on lectin-polymer surfaces coated over both flat and NPA surfaces was then investigated. For flat polymer interfaces, bacteria were detected on the surface after incubation at a solution concentration of 103 cfu/mL, and a corresponding detection limit of 1.7 × 103 cfu/mL was quantified. This detection limit was 1 order of magnitude lower than control lectin surfaces functionalized with standard, carbodiimide coupling chemistry. NPA surfaces containing 300 nm tall pillars further improved the detection limit to 2.1 × 102 cfu/mL, but also reduced the viability of captured cells. Finally, to investigate the impact of cell surface parameters on capture, we used Agrobacterium tumefaciens cells genetically modified to allow manipulation of exopolysaccharide adhesin production levels. Statistical analysis of surface capture levels revealed that lectin surface density was the primary factor driving capture, as opposed to exopolysaccharide adhesin expression. These findings emphasize the critical importance of the synthetic interface and the development of surfaces that combine high lectin densities with tailored physical features to drive high levels of capture. These insights will aid in design of biofunctional interfaces with physicochemical surface properties favorable for capture and isolation of bacteria cells from solutions.


Assuntos
Escherichia coli/isolamento & purificação , Lactonas/química , Lectinas/farmacologia , Nanoestruturas/química , Polivinil/química , Adsorção/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/efeitos dos fármacos , Lectinas/química , Polímeros/química , Polímeros/farmacologia , Soluções/química , Propriedades de Superfície
2.
ACS Appl Mater Interfaces ; 10(38): 32678-32687, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30180545

RESUMO

Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a nonmonotonic trend in thickness change as a function of field strength. This behavior was attributed to elastic responses of microphase separated diblock copolymer chains resulting from variations in interfacial tension of polymer-polymer interfaces due to the redistribution of counteranions in the presence of electric fields.

3.
J Vis Exp ; (136)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-30010667

RESUMO

In this paper, fabrication methods that generate novel surfaces using the azlactone-based block co-polymer, poly (glycidyl methacrylate)-block-poly (vinyl dimethyl azlactone) (PGMA-b-PVDMA), are presented. Due to the high reactivity of azlactone groups towards amine, thiol, and hydroxyl groups, PGMA-b-PVDMA surfaces can be modified with secondary molecules to create chemically or biologically functionalized interfaces for a variety of applications. Previous reports of patterned PGMA-b-PVDMA interfaces have used traditional top-down patterning techniques that generate non-uniform films and poorly controlled background chemistries. Here, we describe customized patterning techniques that enable precise deposition of highly uniform PGMA-b-PVDMA films in backgrounds that are chemically inert or that have biomolecule-repellent properties. Importantly, these methods are designed to deposit PGMA-b-PVDMA films in a manner that completely preserves azlactone functionality through each processing step. Patterned films show well-controlled thicknesses that correspond to polymer brushes (~90 nm) or to highly crosslinked structures (~1-10 µm). Brush patterns are generated using either the parylene lift-off or interface directed assembly methods described and are useful for precise modulation of overall chemical surface reactivity by adjusting either the PGMA-b-PVDMA pattern density or the length of the VDMA block. In contrast, the thick, crosslinked PGMA-b-PVDMA patterns are obtained using a customized micro-contact printing technique and offer the benefit of higher loading or capture of secondary material due to higher surface area to volume ratios. Detailed experimental steps, critical film characterizations, and trouble-shooting guides for each fabrication method are discussed.


Assuntos
Polímeros/química , Propriedades de Superfície
4.
Langmuir ; 34(18): 5204-5213, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693402

RESUMO

Generating physical or chemical gradients in thin-film scaffolds is an efficient approach for screening and optimizing an interfacial structure or chemical functionality to create tailored surfaces that are useful because of their wetting, antifouling, or barrier properties. The relationship between the structure of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes created by the preferential assembly of poly(glycidyl methacrylate)- block-PVDMA diblock copolymers and the ability to chemically modify the PVDMA chains in situ to create a gradient in functionality are examined to investigate how the extent of functionalization affects the interfacial and surface properties. The introduction of a chemical gradient by controlled immersion allows reactive modification to generate position-dependent properties that are assessed by ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, and atomic force microscopy imaging. After functionalization of the azlactone rings with n-alkyl amines, ellipsometry confirms an increase in thickness and contact angle measurements support an increase in hydrophobicity along the substrate. These results are used to establish relationships between layer thickness, reaction time, position, and the extent of functionalization and demonstrate that gradual immersion into the functionalizing solution results in a linear change in chemical functionality along the surface. These findings broadly support efforts to produce tailored surfaces by in situ chemical modification, having application as tailored membranes, protein resistant surfaces, or sensors.

5.
Nanoscale ; 9(21): 7071-7080, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28422265

RESUMO

The ability to widely tune the design of macromolecular bottlebrushes provides access to self-assembled nanostructures formed by microphase segregation in melt, thin film and solution that depart from structures adopted by simple linear copolymers. A series of random bottlebrush copolymers containing poly(3-hexylthiophene) (P3HT) and poly(d,l-lactide) (PLA) side chains grafted on a poly(norbornene) backbone were synthesized via ring-opening metathesis polymerization (ROMP) using the grafting through approach. P3HT side chains induce a physical aggregation of the bottlebrush copolymers upon solvent removal by vacuum drying, primarily driven by attractive π-π interactions; however, the amount of aggregation can be controlled by adjusting side chain composition or by adding linear P3HT chains to the bottlebrush copolymers. Coarse-grained molecular dynamics simulations reveal that linear P3HT chains preferentially associate with P3HT side chains of bottlebrush copolymers, which tends to reduce the aggregation. The nanoscale morphology of microphase segregated thin films created by casting P3HT-PLA random bottlebrush copolymers is highly dependent on the composition of P3HT and PLA side chains, while domain spacing of nanostructures is mainly determined by the length of the side chains. The selective removal of PLA side chains under alkaline conditions generates nanoporous P3HT structures that can be tuned by manipulating molecular design of the bottlebrush scaffold, which is affected by molecular weight and grafting density of the side chains, and their sequence. The ability to exploit the unusual architecture of bottlebrushes to fabricate tunable nanoporous P3HT thin film structures may be a useful way to design templates for optoelectronic applications or membranes for separations.

6.
Macromolecules ; 50(21): 8670-8677, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29503464

RESUMO

We report a simple route to engineer ultrathin polymer brush surfaces with wrinkled morphologies using post-polymerization modification (PPM), where the length scale of the buckled features can be tuned from hundreds of nanometers to one micrometer using PPM reaction time. We show that partial crosslinking of the outer layer of the polymer brush under poor solvent conditions is critical to obtain wrinkled morphologies upon swelling. Characterization of the PPM kinetics and swelling behavior via ellipsometry and the through-thickness composition profile via time-of-flight secondary ion mass spectroscopy (ToF-SIMS) provided keys insight into parameters influencing the buckling behavior.

7.
Molecules ; 20(8): 15098-107, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26295221

RESUMO

Synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In this report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.


Assuntos
Aldeídos/síntese química , Química Orgânica/métodos , Clorofluorcarbonetos de Metano/química , Hidrocarbonetos Aromáticos/síntese química , Aldeídos/química , Hidrocarbonetos Aromáticos/química , Magnésio/química , Pós
8.
ACS Appl Mater Interfaces ; 7(23): 12430-9, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25668395

RESUMO

The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications. Here brushes are used as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. The important finding of this work is that IRSE in the in situ experiments in protein solutions can distinguish between contributions of polymer brushes and proteins. The vibrational bands of the polymers provide insights into the hydration state of the brushes, whereas the protein-specific amide bands are related to changes of the protein secondary structure.


Assuntos
Resinas Acrílicas/química , Nanoestruturas/química , Proteínas/análise , Espectrofotometria Infravermelho/métodos , Adsorção , Proteínas/química , Proteínas/metabolismo
9.
Sci Rep ; 4: 6259, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25178929

RESUMO

The configuration and evolution of coexisting mesoscopic domains with contrasting material properties are critical in creating novel functionality through emergent physical properties. However, current approaches that map the domain structure involve either spatially resolved but protracted scanning probe experiments without real time information on the domain evolution, or time resolved spectroscopic experiments lacking domain-scale spatial resolution. We demonstrate an elegant experimental technique that bridges these local and global methods, giving access to mesoscale information on domain formation and evolution at time scales orders of magnitude faster than current spatially resolved approaches. Our straightforward analysis of laser speckle patterns across the first order phase transition of VO2 can be generalized to other systems with large scale phase separation and has potential as a powerful method with both spatial and temporal resolution to study phase separation in complex materials.

10.
Environ Sci Technol ; 48(1): 79-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24328330

RESUMO

The complexity of the mineral-organic carbon interface may influence the extent of stabilization of organic carbon compounds in soils, which is important for global climate futures. The nanoscale structure of a model interface was examined here by depositing films of organic carbon compounds of contrasting chemical character, hydrophilic glucose and amphiphilic stearic acid, onto a soil mineral analogue (Al2O3). Neutron reflectometry, a technique which provides depth-sensitive insight into the organization of the thin films, indicates that glucose molecules reside in a layer between Al2O3 and stearic acid, a result that was verified by water contact angle measurements. Molecular dynamics simulations reveal the thermodynamic driving force behind glucose partitioning on the mineral interface: The entropic penalty of confining the less mobile glucose on the mineral surface is lower than for stearic acid. The fundamental information obtained here helps rationalize how complex arrangements of organic carbon on soil mineral surfaces may arise.


Assuntos
Óxido de Alumínio/química , Carbono/química , Solo/química , Glucose/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Ácidos Esteáricos/química
11.
Biosensors (Basel) ; 4(1): 63-75, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25587410

RESUMO

The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line arrays or square grid patterns with 5 µm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 µm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

12.
Biomacromolecules ; 14(10): 3742-8, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24003861

RESUMO

Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture. Three-dimensional polymer films were patterned on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. This material increased the number of Pseudomonas fluorescens microbes captured by up to 43% compared to control scaffolds that did not contain the copolymer. These results demonstrate that PGMA-b-PVDMA scaffolds provide a platform for improved microbe capture and screening of EPS content by combining high avidity lectin surfaces with three-dimensional surface topography.


Assuntos
Lens (Planta)/química , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ácidos Polimetacrílicos/metabolismo , Polivinil/metabolismo , Pseudomonas fluorescens/isolamento & purificação , Triticum/química , Estrutura Molecular , Tamanho da Partícula , Ácidos Polimetacrílicos/química , Polivinil/química , Propriedades de Superfície
13.
ACS Macro Lett ; 2(5): 398-402, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35581845

RESUMO

Weak polyelectrolytes (PEs) are complex because intertwined connections between conformation and charge are regulated by the local dielectric environment. While end-tethered PE chains-so-called PE "brushes"-are archetypal systems for comprehending structure-property relationships, it is revealed that the reference state nominally referred to as "dry" is, in fact, a situation in which the chains are hydrated by water vapor in the ambient. Using charge-negative PE homopolymer brushes based on methacrylic acid and copolymer brushes that incorporate methacrylic acid and 2-hydroxyethylmethacrylate, we determine self-consistently the water content of PE films using neutron reflectometry under different hydration conditions. Modeling multiple data sets, we obtain dry polymer mass density and layer thickness, independent of adsorbed water, and PE brush profiles into different pH solutions. We show that hydration of the chains distorts, here by as much as 30%, the quantification of these important physical parameters benchmarked to films in ambient conditions.

14.
Langmuir ; 27(10): 5986-96, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21506527

RESUMO

Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for "click" chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using "click" chemistry, and grafting densities in the range of 0.007-0.95 chains nm(-2) were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm(-3). The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.


Assuntos
Alcinos/química , Química Click , Ácidos Polimetacrílicos/química , Compostos de Epóxi/química , Metacrilatos/química , Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...