Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(4): 1062-1070, 2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29230462

RESUMO

Metal-organic frameworks of general composition [M6(OH)4(O)4(PDC)6-x(Cl)2x(H2O)2x] with M = Zr, Ce, Hf; PDC2- = 2,5-pyridinedicarboxylate and 0 ≤ x ≤ 2 were obtained under reflux using formic, nitric or acetic acid as an additive. Rietveld refinements carried out using a fixed occupancy of the linker molecules according to the results of thermogravimetric measurements confirmed that the MOFs crystallize in the UiO-66 type structure and demonstrate that the structural models describe the data well. Further characterization was carried out by NMR spectroscopy, thermogravimetric analysis, Zr K-edge EXAFS- and Ce L3-edge XANES measurements. To highlight the influence of the additional nitrogen atom of the pyridine ring, luminescence and vapour sorption measurements were carried out. The hydrophilisation of the MOFs was shown by the adsorption of water at lower p/p0 (<0.2) values compared to the corresponding BDC-MOFs (0.3). For water and methanol stability cycling adsorption experiments were carried out to evaluate the MOFs as potential adsorbents in heat transformation applications.

2.
Chem Sci ; 8(10): 6836-6851, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147509

RESUMO

The small pore Cu-CHA zeolite is attracting increasing attention as a versatile platform to design novel single-site catalysts for deNO x applications and for the direct conversion of methane to methanol. Understanding at the atomic scale how the catalyst composition influences the Cu-species formed during thermal activation is a key step to unveil the relevant composition-activity relationships. Herein, we explore by in situ XAS the impact of Cu-CHA catalyst composition on temperature-dependent Cu-speciation and reducibility. Advanced multivariate analysis of in situ XANES in combination with DFT-assisted simulation of XANES spectra and multi-component EXAFS fits as well as in situ FTIR spectroscopy of adsorbed N2 allow us to obtain unprecedented quantitative structural information on the complex dynamics during the speciation of Cu-sites inside the framework of the CHA zeolite.

3.
Phys Chem Chem Phys ; 19(40): 27489-27507, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28975938

RESUMO

An X-ray absorption spectroscopy study of the UiO-67 Pt functionalized metal organic frameworks (MOFs) demonstrates that under appropriate conditions, at least two types of catalytically active sites can be formed in the cavities of the MOF: isolated Pt-complexes and Pt nanoparticles (Pt-NPs). Both pre-made linker synthesis (PMLS) and post-synthesis functionalization (PSF) methods were adopted. XAS was used to monitor the temperature-dependent behaviour of UiO-67-Pt while heating from RT to 623 K, in different gas feeds (pure He, 3% H2/He and 10% H2/He). We collected static in situ Pt LIII XANES and EXAFS spectra at room temperature (RT) before and after the thermal treatment, as well as spectra acquired under operando conditions upon heating. Under 10% H2/He thermal treatment, we unambiguously detected Pt-NP formation which has been followed by a parametric EXAFS analysis of the data collected during temperature programmed H2-reduction (TPR), using the Einstein model to predict the temperature dependence of the Debye-Waller factors. Conversely, in pure He flow, the only significant change observed during TPR is the progressive decrease of the Pt-Cl single scattering contribution, leading to the conclusion that the Pt grafted to the bpydc-linkers remains naked. Advanced EXAFS/TEM analysis allowed us to quantify the fraction of Pt in the form of Pt-NPs, values that have been quantitatively confirmed by linear combination analysis of the XANES spectra. In situ XANES/EXAFS study was supported by ex situ XRPD and BET analyses, confirming the framework stability and testifying a loss of the internal volume after TPR due to the formation of Pt-NPs insides the MOF pores, more relevant in the sample where smaller Pt-NPs were formed.

4.
Faraday Discuss ; 201: 265-286, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28621776

RESUMO

The exceptional thermal and chemical stability of the UiO-66, -67 and -68 classes of isostructural MOFs [J. Am. Chem. Soc., 2008, 130, 13850] makes them ideal materials for functionalization purposes aimed at introducing active centres for potential application in heterogeneous catalysis. We previously demonstrated that a small fraction (up to 10%) of the linkers in the UiO-67 MOF can be replaced by bipyridine-dicarboxylate (bpydc) moieties exhibiting metal-chelating ability and enabling the grafting of Pt(ii) and Pt(iv) ions in the MOF framework [Chem. Mater., 2015, 27, 1042] upon interaction with PtCl2 or PtCl4 precursors. Herein we extend this functionalization approach in two directions. First, we show that by controlling the activation of the UiO-67-Pt we can move from a material hosting isolated Pt(ii) sites anchored to the MOF framework with Pt(ii) exhibiting two coordination vacancies (potentially interesting for C-H bond activation) to the formation of very small Pt nanoparticles hosted inside the MOF cavities (potentially interesting for hydrogenation reactions). The second direction consists of the extension of the approach to the insertion of Cu(ii), obtained via interaction with CuCl2, and exhibiting interesting redox properties. All materials have been characterized by in situ X-ray absorption spectroscopy at the Pt L3- and Cu K-edges.

5.
Chem Sci ; 6(1): 548-563, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28936309

RESUMO

Cu-SSZ-13 is a highly active NH3-SCR catalyst for the abatement of harmful nitrogen oxides (NO x , x = 1, 2) from the exhausts of lean-burn engines. The study of Cu-speciation occurring upon thermal dehydration is a key step for the understanding of the enhanced catalytic properties of this material and for identifying the SCR active sites and their redox capability. Herein, we combined FTIR, X-ray absorption (XAS) and emission (XES) spectroscopies with DFT computational analysis to elucidate the nature and location of the most abundant Cu sites in the activated catalyst. Different Cu species have been found to be dominant as a function of the dehydration temperature and conditions. Data analysis revealed that the dehydration process of Cu cations is essentially completed at 250 °C, with the formation of dehydrated [CuOH]+ species hosted in close proximity to 1-Al sites in both d6r and 8r units of the SSZ-13 matrix. These species persist at higher temperatures only if a certain amount of O2 is present in the gas feed, while under inert conditions they undergo virtually total "self-reduction" as a consequence of an OH extra-ligand loss, resulting in bi-coordinated bare Cu+ cations. Synchrotron characterization supported by computational analysis allowed an unprecedented quantitative refinement of the local environment and structural parameters of these Cu(ii) and Cu(i) species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...