Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769336

RESUMO

Forty-five strains of AIVs were isolated from wild aquatic birds during their autumn migration through Moscow (Russia). The aim of this work is to study the dynamics of AIV genomes in their natural habitat. Viruses were isolated from fecal sample in embryonated chicken eggs; their complete genomes were sequenced, and a phylogenetic analysis was performed. The gene segments of the same lineage persisted over the years in the absence of persistence of complete viral genomes. The genes for internal proteins of the same lineage were often maintained by the viruses over few years; however, they were typically associated with the genes of novel HA and NA subtypes. Although frequent reassortment events were observed for any pair of internal genes, there was no reassortment between HA and NA segments. The differences in the persistence of phylogenetic lineages of surface and internal proteins and the different evolutionary strategy for these two types of genes of AIVs in primary hosts are discussed.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Filogenia , Moscou , Animais Selvagens , Aves
2.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203384

RESUMO

The North American low pathogenic H7N2 avian influenza A viruses, which lack the 220-loop in the hemagglutinin (HA), possess dual receptor specificity for avian- and human-like receptors. The purpose of this work was to determine which amino acid substitutions in HA affect viral antigenic and phenotypic properties that may be important for virus evolution. By obtaining escape mutants under the immune pressure of treatment with monoclonal antibodies, antigenically important amino acids were determined to be at positions 125, 135, 157, 160, 198, 200, and 275 (H3 numbering). These positions, except 125 and 275, surround the receptor binding site. The substitutions A135S and A135T led to the appearance of an N-glycosylation site at 133N, which reduced affinity for the avian-like receptor analog and weakened binding with tested monoclonal antibodies. Additionally, the A135S substitution is associated with the adaptation of avian viruses to mammals (cat, human, or mouse). The mutation A160V decreased virulence in mice and increased affinity for the human-type receptor analog. Conversely, substitution G198E, in combination with 157N or 160E, displayed reduced affinity for the human-type receptor analog.


Assuntos
Hemaglutininas , Influenza Humana , Humanos , Animais , Camundongos , Vírus da Influenza A Subtipo H7N2 , Anticorpos Monoclonais , América do Norte , Mamíferos
3.
Viruses ; 14(12)2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36560628

RESUMO

The ponds of the Moscow region during the autumn migration of birds are a place with large concentrations of mallard ducks, which are the main hosts of avulaviruses (avian paramyxoviruses) and influenza A viruses (IAV). The purpose of this study was the determination of the biological diversity of IAV and avulaviruses isolated from mallards in Moscow's ponds. A phylogenetic analysis of IAV was performed based on complete genome sequencing, and virus genomic reassortment in nature was studied. Almost all IAV genome segments clustered with apathogenic duck viruses according to phylogenetic analysis. The origin of the genes of Moscow isolates were different; some of them belong to European evolutionary branches, some to Asian ones. The majority of closely related viruses have been isolated in the Western Eurasian region. Much less frequently, closely related viruses have been isolated in Siberia, China, and Korea. The quantity and diversity of isolated viruses varied considerably depending on the year and have decreased since 2014, perhaps due to the increasing proportion of nesting and wintering ducks in Moscow.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Filogenia , Influenza Aviária/epidemiologia , Moscou/epidemiologia , Lagoas , Patos
4.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142740

RESUMO

Avian influenza viruses (AIV) of wild ducks are known to be able to sporadically infect domestic birds and spread along poultry. Regular surveillance of AIV in the wild is needed to prepare for potential outbreaks. During long-year monitoring, 46 strains of AIV were isolated from gulls and mallards in Moscow ponds and completely sequenced. Amino acid positions that affect the pathogenicity of influenza viruses in different hosts were tested. The binding affinity of the virus for receptors analogs typical for different hosts and the pathogenicity of viruses for mice and chickens were investigated. Moscow isolates did not contain well-known markers of pathogenicity and/or adaptation to mammals, so as a polybasic cleavage site in HA, substitutions of 226Q and 228G amino acids in the receptor-binding region of HA, and substitutions of 627E and 701D amino acids in the PB2. The PDZ-domain ligand in the NS protein of all studied viruses contains the ESEV or ESEI sequence. Although several viruses had the N66S substitution in the PB1-F2 protein, all Moscow isolates were apathogenic for both mice and chickens. This demonstrates that the phenotypic manifestation of pathogenicity factors is not absolute but depends on the genome context.


Assuntos
Vírus da Influenza A , Influenza Aviária , Aminoácidos/genética , Animais , Galinhas , Patos , Vírus da Influenza A/genética , Ligantes , Mamíferos , Camundongos , Filogenia , Virulência/genética , Fatores de Virulência
5.
Viruses ; 13(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452449

RESUMO

The H7 subtype of avian influenza viruses (AIV) stands out among other AIV. The H7 viruses circulate in ducks, poultry and equines and have repeatedly caused outbreaks of disease in humans. The laboratory strain A/chicken/Rostock/R0p/1934 (H7N1) (R0p), which was previously derived from the highly pathogenic strain A/FPV/Rostock/1934 (H7N1), was studied in this work to ascertain its biological property, genome stability and virulent changing mechanism. Several virus variants were obtained by serial passages in the chicken lungs. After 10 passages of this virus through the chicken lungs we obtained a much more pathogenic variant than the starting R0p. The study of intermediate passages showed a sharp increase in pathogenicity between the fifth and sixth passage. By cloning these variants, a pair of strains (R5p and R6p) was obtained, and the complete genomes of these strains were sequenced. Single amino acid substitution was revealed, namely reversion Gly140Arg in HA1. This amino acid is located at the head part of the hemagglutinin, adjacent to the receptor-binding site. In addition to the increased pathogenicity in chicken and mice, R6p differs from R5p in the shape of foci in cell culture and an increased affinity for a negatively charged receptor analogue, while maintaining a pattern of receptor-binding specificity and the pH of conformational change of HA.


Assuntos
Substituição de Aminoácidos , Arginina , Glicina , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H7N1/química , Vírus da Influenza A Subtipo H7N1/patogenicidade , Animais , Galinhas/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H7N1/genética , Influenza Aviária , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/virologia , Inoculações Seriadas , Virulência
6.
Viruses ; 13(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072256

RESUMO

Influenza A viruses (IAVs) evolve via point mutations and reassortment of viral gene segments. The patterns of reassortment in different host species differ considerably. We investigated the genetic diversity of IAVs in wild ducks and compared it with the viral diversity in gulls. The complete genomes of 38 IAVs of H1N1, H1N2, H3N1, H3N2, H3N6, H3N8, H4N6, H5N3, H6N2, H11N6, and H11N9 subtypes isolated from wild mallard ducks and gulls resting in a city pond in Moscow, Russia were sequenced. The analysis of phylogenetic trees showed that stable viral genotypes do not persist from year to year in ducks owing to frequent gene reassortment. For comparison, similar analyses were carried out using sequences of IAVs isolated in the same period from ducks and gulls in The Netherlands. Our results revealed a significant difference in diversity and rates of reassortment of IAVs in ducks and gulls.


Assuntos
Variação Genética , Genótipo , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Vírus Reordenados/genética , Animais , Charadriiformes/virologia , Patos/virologia , Fezes/virologia , Genoma Viral , Influenza Aviária/epidemiologia , Filogenia
7.
Virology ; 522: 37-45, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30014856

RESUMO

Ducks, gulls and shorebirds represent the major hosts of influenza A viruses (IAVs) in nature, but distinctions of IAVs in different birds are not well defined. Here we characterized the receptor specificity of gull IAVs with HA subtypes H4, H6, H14, H13 and H16 using synthetic sialylglycopolymers. In contrast to duck IAVs, gull IAVs efficiently bound to fucosylated receptors and often preferred sulfated and non-sulfated receptors with Galß1-4GlcNAc cores over the counterparts with Galß1-3GlcNAc cores. Unlike all other IAVs of aquatic birds, H16 IAVs showed efficient binding to Neu5Acα2-6Gal-containing receptors and bound poorly to Neu5Acα2-3Galß1-3-terminated (duck-type) receptors. Analysis of HA crystal structures and amino acid sequences suggested that the amino acid at position 222 is an important determinant of the receptor specificity of IAVs and that transmission of duck viruses to gulls and shorebirds is commonly accompanied by substitutions at this position.


Assuntos
Charadriiformes/virologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Influenza Aviária/virologia , Oligossacarídeos/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Sequência de Aminoácidos , Animais , Sítios de Ligação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Modelos Moleculares , Oligossacarídeos/química , Conformação Proteica , Receptores Virais/química
8.
Viruses ; 10(4)2018 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-29614716

RESUMO

Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/transmissão , Vacinas Vivas não Atenuadas/imunologia , Eliminação de Partículas Virais/imunologia , Administração Oral , Animais , Animais Domésticos , Galinhas , Patos , Fezes/virologia , Imunização , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza/administração & dosagem , Doenças das Aves Domésticas/mortalidade , Vacinas Vivas não Atenuadas/administração & dosagem
9.
J Gen Virol ; 97(1): 49-52, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26487269

RESUMO

Swine vesicular disease virus (SVDV) emerged around 1960 from a human enterovirus ancestor, coxsackievirus B5 (CVB5), and caused a series of epizootics in Europe and Asia. We characterized a coxsackievirus B4 strain that caused an epizootic involving 24 488 pigs in the Soviet Union in 1975. Phylogenetic evidence suggested that the swine virus emerged from a human ancestor between 1945 and 1975, almost simultaneously with the transfer of CVB5.


Assuntos
Infecções por Coxsackievirus/veterinária , Enterovirus Humano B/isolamento & purificação , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Análise por Conglomerados , Infecções por Coxsackievirus/epidemiologia , Infecções por Coxsackievirus/história , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/classificação , História do Século XX , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Suínos , Doenças dos Suínos/história , U.R.S.S./epidemiologia , Proteínas Estruturais Virais/genética
10.
Influenza Other Respir Viruses ; 6(3): 188-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21951678

RESUMO

OBJECTIVE: Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. METHOD: Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. RESULTS: All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. CONCLUSIONS: The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/efeitos adversos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/efeitos adversos , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...