Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(4): 044303, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752709

RESUMO

Recent studies of the weakly bound anisole⋯CH4 complex found a dual mode of binding, featuring both C/H⋯π and C/H⋯O noncovalent interactions. In this work, we examine the dissociation energies of related aniline⋯(CH4)n (n = 1, 2) van der Waals clusters, where both C/H⋯π and C/H⋯N interactions are possible. Using a combination of theory and experiments that include mass-selected two-color resonant two-photon ionization spectroscopy, two-color appearance potential (2CAP) measurements, and velocity-mapped ion imaging (VMI), we derive the dissociation energies of both complexes in the ground (S0), excited (S1), and cation radical (D0) states. As the amide group is non-planar in the ground state, the optimized ground state geometry of the aniline⋯CH4 1:1 complex shows two isomers, each with the methane positioned above the aniline ring. The observed redshift of the electronic origin from the aniline monomer is consistent with TDDFT calculations for the more stable isomer, where the methane sits on the same face as the amino hydrogens. The dissociation energies of the 1:1 complex, obtained from 2CAP measurements, are in good agreement with the calculated theoretical values from selected density functional theory methods. VMI data for the 1:1 complex gave a binding energy value overestimated by ∼179 cm-1 when compared to the 2CAP results, indicating that dissociative ionization selectively populates an excited vibrational level of the aniline cation radical. Given that the electron donating ability of aromatic substituents trends as -NH2 > -OCH3 > -CH3, it is noteworthy that the strength of methane binding also trends in this order, as found by experiment (dissociation energies in kJ/mol: 6.6 > 5.8 > 4.5) and predicted by theory (PBE0-D3/def2-QZVPPD, in kJ/mol: 6.9 > 6.0 > 5.0). For the 1:2 complex of aniline and methane, calculations predict that the more stable conformer is the one where the two methane molecules lie on opposite faces of the ring, consistent with the observed redshift of the electronic origin. Unlike the anisole-methane 1:2 complex, which shows an enhanced dissociation energy for the loss of one methane in comparison with the 1:1 complex, here, we find that the energy required to remove one methane from the ground state aniline-methane 1:2 complex is smaller than that of the 1:1 complex, consistent with theoretical expectations.

2.
J Phys Chem A ; 123(13): 2874-2880, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30860841

RESUMO

Noncovalent forces such as hydrogen bonding, halogen bonding, π-π stacking, and C-H/π and C-H/O interactions hold the key to such chemical processes as protein folding, molecular self-assembly, and drug-substrate interactions. Invaluable insight into the nature and strength of these forces continues to come from the study of isolated molecular clusters. In this work, we report on a study of the isolated anisole-methane complex, where both C-H/π and C-H/O interactions are possible, using a combination of theory and experiments that include mass-selected two-color resonant two-photon ionization spectroscopy, two-color appearance potential (2CAP) measurements, and velocity mapped ion imaging (VMI). Using 2CAP and VMI, we derive the binding energies of the complex in ground, excited, and cation radical states. The experimental values from the two methods are in excellent agreement, and they are compared with selected theoretical values calculated using density functional theory and ab initio methods. The optimized ground-state cluster geometry, which is consistent with the experimental observations, shows methane sitting above the ring, interacting with anisole via both C-H/π and C-H/O interactions, and this dual mode of interaction is reflected in a larger ground-state binding energy as compared with the prototypical benzene-methane system.


Assuntos
Anisóis/química , Carbono/química , Teoria da Densidade Funcional , Hidrogênio/química , Metano/química , Oxigênio/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular
3.
J Chem Phys ; 149(13): 134314, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292228

RESUMO

Studies of exciton and hole stabilization in multichromophoric systems underpin our understanding of electron transfer and transport in materials and biomolecules. The simplest model systems are dimeric, and recently we compared the gas-phase spectroscopy and dynamics of van der Waals dimers of fluorene, 9-methylfluorene (MF), and 9,9'-dimethylfluorene (F1) to assess how sterically controlled facial encumbrance modulates the dynamics of excimer formation and charge resonance stabilization (CRS). Dimers of fluorene and MF show only excimer emission upon electronic excitation, and significant CRS as evidenced in a reduced ionization potential for the dimer relative the monomer. By contrast, the dimer of F1 shows no excimeric emission, rather structured emission from the locally excited state of a tilted (non π-stacked) dimer, evidencing the importance of C-H/π interactions and increased steric constraints that restrict a cofacial approach. In this work, we report our full results on van der Waals clusters of F1, using a combination of theory and experiments that include laser-induced fluorescence, mass-selected two-color resonant two-photon ionization spectroscopy, and two-color appearance potential measurements. We use the latter to derive the binding energies of the F1 dimer in ground, excited, and cation radical states. Our results are compared with van der Waals and covalently linked clusters of fluorene to assess both the relative strength of π-stacking and C-H/π interactions in polyaromatic assemblies and the role of π-stacking in excimer formation and CRS.

4.
Angew Chem Int Ed Engl ; 57(27): 8189-8193, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29733488

RESUMO

Exciton and charge delocalization across π-stacked assemblies is of importance in biological systems and functional polymeric materials. To examine the requirements for exciton and hole stabilization, cofacial bifluorene (F2) torsionomers were designed, synthesized, and characterized: unhindered (model) Me F2, sterically hindered tBu F2, and cyclophane-like C F2, where fluorenes are locked in a perfect sandwich orientation via two methylene linkers. This set of bichromophores with varied torsional rigidity and orbital overlap shows that exciton stabilization requires a perfect sandwich-like arrangement, as seen by strong excimeric-like emission only in C F2 and Me F2. In contrast, hole delocalization is less geometrically restrictive and occurs even in sterically hindered tBu F2, as judged by 160 mV hole stabilization and a near-IR band in the spectrum of its cation radical. These findings underscore the diverse requirements for charge and energy delocalization across π-stacked assemblies.


Assuntos
Fluorenos/química , Técnicas Eletroquímicas , Espectrometria de Fluorescência , Termodinâmica
5.
J Phys Chem Lett ; 9(8): 2058-2061, 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29630843

RESUMO

π-Stacking interactions are ubiquitious across chemistry and biochemistry, impacting areas from organic materials and photovoltaics to biochemistry and DNA. However, experimental data is lacking regarding the strength of π-stacking forces-an issue not settled even for the simplest model system, the isolated benzene dimer. Here, we use two-color appearance potential measurements to determine the binding energies of the isolated, π-stacked dimer of fluorene (C13H10) in ground, excited, and ionic states. Our measurements provide the first precise values for π-stacking interaction energies in these states, which are key benchmarks for theory. Indeed, theoretical predictions using ab initio and carefully benchmarked DFT methods are in excellent agreement with experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...