Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1464, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362476

RESUMO

Cells are able to sense and react to their physical environment by translating a mechanical cue into an intracellular biochemical signal that triggers biological and mechanical responses. This process, called mechanotransduction, controls essential cellular functions such as proliferation and migration. The cellular response to an external mechanical stimulation has been investigated with various static and dynamic systems, so far limited to global deformations or to local stimulation through discrete substrates. To apply local and dynamic mechanical constraints at the single cell scale through a continuous surface, we have developed and modelled magneto-active substrates made of magnetic micro-pillars embedded in an elastomer. Constrained and unconstrained substrates are analysed to map surface stress resulting from the magnetic actuation of the micro-pillars and the adherent cells. These substrates have a rigidity in the range of cell matrices, and the magnetic micro-pillars generate local forces in the range of cellular forces, both in traction and compression. As an application, we followed the protrusive activity of cells subjected to dynamic stimulations. Our magneto-active substrates thus represent a new tool to study mechanotransduction in single cells, and complement existing techniques by exerting a local and dynamic stimulation, traction and compression, through a continuous soft substrate.


Assuntos
Ferro/farmacologia , Mecanotransdução Celular , Análise de Célula Única/métodos , Estresse Mecânico , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Fenômenos Magnéticos , Camundongos , Células NIH 3T3 , Propriedades de Superfície
2.
ACS Nano ; 11(12): 12077-12086, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29111670

RESUMO

Optical biomarkers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the nitrogen-vacancy (NV) center in nanodiamond has emerged as a promising candidate for bioimaging and biosensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multielectrode array recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods, 12-36 h. The physiological validation motivates the second part of the study, which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen-vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multifunctional intraneuronal sensors with nanoscale resolution, which may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.

3.
Nano Lett ; 16(1): 326-33, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26709529

RESUMO

Quantum sensors based on solid-state spins provide tremendous opportunities in a wide range of fields from basic physics and chemistry to biomedical imaging. However, integrating them into a scanning probe microscope to enable practical, nanoscale quantum imaging is a highly challenging task. Recently, the use of single spins in diamond in conjunction with atomic force microscopy techniques has allowed significant progress toward this goal, but generalization of this approach has so far been impeded by long acquisition times or by the absence of simultaneous topographic information. Here, we report on a scanning quantum probe microscope which solves both issues by employing a nanospin ensemble hosted in a nanodiamond. This approach provides up to an order of magnitude gain in acquisition time while preserving sub-100 nm spatial resolution both for the quantum sensor and topographic images. We demonstrate two applications of this microscope. We first image nanoscale clusters of maghemite particles through both spin resonance spectroscopy and spin relaxometry, under ambient conditions. Our images reveal fast magnetic field fluctuations in addition to a static component, indicating the presence of both superparamagnetic and ferromagnetic particles. We next demonstrate a new imaging modality where the nanospin ensemble is used as a thermometer. We use this technique to map the photoinduced heating generated by laser irradiation of a single gold nanoparticle in a fluid environment. This work paves the way toward new applications of quantum probe microscopy such as thermal/magnetic imaging of operating microelectronic devices and magnetic detection of ion channels in cell membranes.


Assuntos
Nanopartículas de Magnetita/química , Imagem Molecular , Nanodiamantes/química , Nanotecnologia , Compostos Férricos/química , Ouro/química , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...