Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 346, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28472930

RESUMO

BACKGROUND: Among viruses, bacteriophages are a group of special interest due to their capacity of infecting bacteria that are important for biotechnology and human health. Composting is a microbial-driven process in which complex organic matter is converted into humus-like substances. In thermophilic composting, the degradation activity is carried out primarily by bacteria and little is known about the presence and role of bacteriophages in this process. RESULTS: Using Pseudomonas aeruginosa as host, we isolated three new phages from a composting operation at the Sao Paulo Zoo Park (Brazil). One of the isolated phages is similar to Pseudomonas phage Ab18 and belongs to the Siphoviridae YuA-like viral genus. The other two isolated phages are similar to each other and present genomes sharing low similarity with phage genomes in public databases; we therefore hypothesize that they belong to a new genus in the Podoviridae family. Detailed genomic descriptions and comparisons of the three phages are presented, as well as two new clusters of phage genomes in the Viral Orthologous Clusters database of large DNA viruses. We found sequences encoding homing endonucleases that disrupt a putative ribonucleotide reductase gene and an RNA polymerase subunit 2 gene in two of the phages. These findings provide insights about the evolution of two-subunits RNA polymerases and the possible role of homing endonucleases in this process. Infection tests on 30 different strains of bacteria reveal a narrow host range for the three phages, restricted to P. aeruginosa PA14 and three other P. aeruginosa clinical isolates. Biofilm dissolution assays suggest that these phages could be promising antimicrobial agents against P. aeruginosa PA14 infections. Analyses on composting metagenomic and metatranscriptomic data indicate association between abundance variations in both phage and host populations in the environment. CONCLUSION: The results about the newly discovered and described phages contribute to the understanding of tailed bacteriophage diversity, evolution, and role in the complex composting environment.


Assuntos
Genoma Viral , Fagos de Pseudomonas/genética , Sequência de Bases , Biofilmes , Códon , Sequência Conservada , Endodesoxirribonucleases/genética , Evolução Molecular , Variação Genética , Mutagênese Insercional , Filogenia , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/ultraestrutura , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Tropismo Viral
2.
Sci Rep ; 6: 38915, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941956

RESUMO

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.


Assuntos
Compostagem , Consórcios Microbianos , Microbiologia do Solo , Bactérias/genética , Biodegradação Ambiental , Biomassa , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/metabolismo , Metagenômica , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...