Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 10(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051052

RESUMO

Old metallurgical dumps across Europe represent a loss of valuable land and a potential threat to the environment, especially to groundwater (GW). The Javornik electric arc furnace (EAF) and ladle slag heap, situated in Slovenia, was investigated in this study. The environmental impact of the slag heap was evaluated by combining leaching characterization tests of landfill samples and geochemical modelling. It was shown that throughout the landfill the same minerals and sorptive phases control the leaching of elements of potential concern, despite variations in chemical composition. Although carbonation of the disposed steel slags occurred (molar ratio CO3/(Ca+Mg) = 0.53) relative to fresh slag, it had a limited effect on the leaching behaviour of elements of potential concern. The leaching from the slag heaps had also a limited effect on the quality of the GW. A site-specific case, however, was that leachates from the slag heap were strongly diluted, since a rapid flow of GW fed from the nearby Sava River was observed in the landfill area. The sampling and testing approach applied provides a basis for assessing the long-term impact of release and is a good starting point for evaluating future management options, including beneficial uses for this type of slag.

2.
J Hazard Mater ; 317: 147-157, 2016 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-27262282

RESUMO

In this study, the leachability of freshly produced ladle slag derived from both austenitic and ferritic stainless steel production, and from electrical and structural steel production, was investigated, in order to determine whether variations in the chemical and mineralogical composition of these slags affect their leaching behaviour. The effect of the method used for slag cooling was also studied. The results obtained by using the single batch test were combined with those obtained by means of more sophisticated characterisation leaching tests, which, in combination with geochemical speciation modelling, helped to better identify the release mechanisms and phases that control the release of individual elements. It was found that, although variations in the chemical composition of the slag can affect the slag's minerology, neither such variations, nor the choice of the slag cooling treatment, have a significant effect on the leachability of individual elements, since the leaching is governed by surface phenomena. In fact, the mineral transformations on the slag surface, rather than the bulk mineral composition, dictate the release of these elements from the ladle slag. The solubility-controlling phases were predicted by multi-element modelling, and verified to the extent made possible by the performed mineralogical investigations.

3.
Waste Manag ; 30(1): 110-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19796928

RESUMO

Recirculation of leachate on a covered landfill site planted with willows or other highly evapotranspirative woody plants is an inexpensive option for leachate management. In our study, a closed landfill leachate recirculation system was established on a rehabilitated municipal solid waste landfill site with planted landfill cover. The main objective of the study was to evaluate the sustainability of the system with regard to high hydraulic loads of the landfill leachate on the landfill cover and high concentrations of saline ions, especially potassium (K(+)), sodium (Na(+)) and chloride (Cl(-)), in leachate. The results of intensive monitoring, implemented during May 2004 and September 2007, including leachate, soil and plant samples, showed a high sustainability of the system regarding saline ions with the precipitation regime of the studied region. Saline ion concentrations in leachates varied between 132 and 2592mg Cl(-) L(-1), 69 and 1310mg Na(+) L(-1) and between 66 and 2156mg K(+) L(-1), with mean values of 1010, 632 and 686mg L(-1), respectively. Soil salinity, measured as soil electrical conductivity (EC), remained between 0.17 and 0.38mS cm(-1) at a depth between 0 and 90cm. An average annual precipitation of 1000mm provided sufficient leaching of saline ions, loaded by irrigation with landfill leachate, from the soil of the landfill cover and thus prevented possible salinity shocks to the planted willows.


Assuntos
Íons , Eliminação de Resíduos/métodos , Sais/química , Poluentes do Solo/análise , Biodegradação Ambiental , Cloretos/química , Conservação dos Recursos Naturais , Condutividade Elétrica , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Plantas/metabolismo , Potássio/química , Sódio/química , Solo , Gerenciamento de Resíduos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...