Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 80(5): 388-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18605378

RESUMO

Sequencing batch reactors were acclimated under aerobic and alternating anoxic/aerobic conditions. Greater nitrification rates in the alternating reactor were investigated by comparing environmental conditions. In the alternating reactor, pH, alkalinity, oxygen, and nitrite were higher at the onset of aerobic nitrification. Kinetic studies and batch tests, with biomass developed under aerobic and alternating conditions, revealed that these factors were insufficient to explain the divergent nitrification rates. Nitrifying genera vary in nitrification kinetics and sensitivity to environmental conditions. Nitrosospira and Nitrospira spp. could dominate in aerobic reactors, as they are adapted to low nitrite and oxygen conditions. Nitrosomonas and Nitrobacter spp. are better competitors with abundant substrates and have higher nitrite tolerance, so they could excel under alternating conditions. This theoretical explanation is consistent with the kinetics and environmental conditions in these reactors and argues for using alternating treatment, because the harsh conditions select for populations with inherently faster nitrification rates.


Assuntos
Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Nitrosomonas/metabolismo , Esgotos/microbiologia , Aerobiose , Anaerobiose
2.
Water Environ Res ; 80(1): 47-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18254398

RESUMO

Natural and synthetic estrogens present in municipal wastewater can be biodegraded during treatment, particularly in activated sludge. The objective was to assess the extent of transformation of 17-beta-estradiol (E2) and 17-alpha-ethinylestradiol (EE2) by nitrifying activated sludge and evaluate potential relationships between availability of oxygen, nitrification rate, and estrogen removal. For each batch experiment, two reactors were set up--aerobic and alternating anoxic/aerobic-which were then amended with E2 and EE2 from methanolic stock solutions. The EE2 was persistent under anoxic conditions; under aerobic conditions, the observed level of its removal was 22%. The E2 was readily converted to estrone (El)--faster under aerobic (nitrifying) than anoxic (denitrifying) conditions. During the initial anoxic conditions, a metabolite consistent with 17-alpha-estradiol transiently accumulated and was subsequently removed when the reactor was aerated. Higher removal rates of estrogens were associated with higher nitrification rates, which supports the contention that the nitrifying biomass was responsible for their removal.


Assuntos
Estrogênios/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Anaerobiose , Biotransformação , Estradiol/metabolismo , Estrogênios/isolamento & purificação , Estrona/metabolismo , Etinilestradiol/metabolismo , Nitrogênio/metabolismo
3.
J Environ Sci Health B ; 43(2): 113-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18246502

RESUMO

This study was undertaken to assess 2,4-D mineralization in an undulating cultivated field, along a sloping transect (458 m to 442 m above sea level), as a function of soil type, soil microbial communities and the sorption of 2,4-D to soil. The 2,4-D soil sorption coefficient (Kd) ranged from 1.81 to 4.28 L kg(-1), the 2,4-D first-order mineralization rate constant (k) ranged from 0.04 to 0.13 day(-1) and the total amount of 2,4-D mineralized at 130 days (M(130)) ranged from 24 to 39%. Both k and M(130) were significantly negatively associated (or correlated) with soil organic carbon content (SOC) and Kd. Both k and M(130) were significantly associated with two fatty-acid methyl esters (FAME), i17:1 and a18, but not with twenty-two other individual FAME. Imperfectly drained soils (Gleyed Dark Grey Chernozems) in lower-slopes showed significantly lesser 2,4-D mineralization relative to well-drained soils (Orthic Dark Grey Chernozems) in mid- and upper-slopes. Well-drained soils had a greater potential for 2,4-D mineralization because of greater abundance and diversity of the microbial community in these soils. However, the reduced 2,4-D mineralization in imperfectly drained soils was predominantly because of their greater SOC and increased 2,4-D sorption, limiting the bioavailability of 2,4-D for degradation. The wide range of 2,4-D sorption and mineralization in this undulating cultivated field is comparable in magnitude and extent to the variability of 2,4-D sorption and mineralization observed at a regional scale in Manitoba. As such, in-field variations in SOC and the abundance and diversity of microbial communities are determining factors that require greater attention in assessing the risk of movement of 2,4-D by runoff, eroded soil and leaching.


Assuntos
Ácido 2,4-Diclorofenoxiacético/química , Herbicidas/química , Minerais/química , Microbiologia do Solo , Poluentes do Solo/análise , Ácido 2,4-Diclorofenoxiacético/análise , Adsorção , Carbono/química , Monitoramento Ambiental , Meia-Vida , Herbicidas/análise , Cinética , Manitoba , Minerais/análise , Solo/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle
4.
Appl Environ Microbiol ; 70(2): 745-51, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14766550

RESUMO

We examined the potential use of natural-abundance stable carbon isotope ratios of lipids for determining substrate usage by sulfate-reducing bacteria (SRB). Four SRB were grown under autotrophic, mixotrophic, or heterotrophic growth conditions, and the delta13C values of their individual fatty acids (FA) were determined. The FA were usually 13C depleted in relation to biomass, with Deltadelta13C(FA - biomass) of -4 to -17 per thousand; the greatest depletion occurred during heterotrophic growth. The exception was Desulfotomaculum acetoxidans, for which substrate limitation resulted in biomass and FA becoming isotopically heavier than the acetate substrate. The delta13C values of FA in Desulfotomaculum acetoxidans varied with the position of the double bond in the monounsaturated C16 and C18 FA, with FA becoming progressively more 13C depleted as the double bond approached the methyl end. Mixotrophic growth of Desulfovibrio desulfuricans resulted in little depletion of the i17:1 biomarker relative to biomass or acetate, whereas growth with lactate resulted in a higher proportion of i17:1 with a greater depletion in 13C. The relative abundances of 10Me16:0 in Desulfobacter hydrogenophilus and Desulfobacterium autotrophicum were not affected by growth conditions, yet the Deltadelta13C(FA - substrate) values of 10Me16:0 were considerably greater during autotrophic growth. These experiments indicate that FA delta13C values can be useful for interpreting carbon utilization by SRB in natural environments.


Assuntos
Biomarcadores/análise , Isótopos de Carbono/metabolismo , Ácidos Graxos/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Técnicas Bacteriológicas , Meios de Cultura , Deltaproteobacteria/crescimento & desenvolvimento , Deltaproteobacteria/metabolismo , Desulfovibrio/crescimento & desenvolvimento , Desulfovibrio/metabolismo , Peptococcaceae/crescimento & desenvolvimento , Peptococcaceae/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
5.
Can J Microbiol ; 45(6): 458-63, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10453474

RESUMO

The metabolism of cresols under sulfate-reducing conditions was investigated in Desulfotomaculum sp. strain Groll. This strain grows on a variety of aromatic compounds, including para- and meta- but not ortho-cresol. Degradation of p-cresol proceeded by oxidation reactions of the methyl group to yield p-hydroxybenzoate, which was then dehydroxylated to benzoate. The aromatic intermediates expected for this pathway, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoate, and benzoate, were readily metabolized by strain Groll. Utilization of these intermediates generally preceded and inhibited the degradation of p-cresol. p-Hydroxybenzoate and benzoate were detected in culture fluid as metabolites of p-cresol. p-Hydroxybenzaldehyde and p-hydroxybenzoate were detected in cultures degrading p-hydroxybenzyl alcohol. Enzyme activities responsible for utilization of p- and m-cresol, induced by growth on the respective cresol, were detected in cell-free extracts of strain Groll. The compounds detected in culture fluids and the enzyme activities detected in cell-free extracts indicate that the pathways for the degradation of p- and m-cresol converge on benzoate, followed by metabolism to benzoyl-coenzyme A (CoA). Strain Groll can utilize both cresol isomers under sulfate-reducing conditions by similar reactions, but the enzyme activities catalyzing these transformations of the two isomers appear distinct.


Assuntos
Cresóis/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Anaerobiose , Biodegradação Ambiental , Coenzima A Ligases/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
6.
Appl Environ Microbiol ; 63(8): 3170-5, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16535673

RESUMO

m-Cresol metabolism under sulfate-reducing conditions was studied with a pure culture of Desulfotomaculum sp. strain Groll. Previous studies with a sulfate-reducing consortium indicated that m-cresol was degraded via an initial para-carboxylation reaction. However, 4-hydroxy-2-methylbenzoic acid was not degraded by strain Groll, and no evidence for ring carboxylation of m-cresol was found. Strain Groll readily metabolized the putative metabolites of a methyl group oxidation pathway, including 3-hydroxybenzyl alcohol, 3-hydroxybenzaldehyde, 3-hydroxybenzoic acid, and benzoic acid. Degradation of these compounds preceded and inhibited m-cresol decay. 3-Hydroxybenzoic acid was detected in cultures that received either m-cresol or 3-hydroxybenzyl alcohol, and trace amounts of benzoic acid were detected in m-cresol-degrading cultures. Therefore, we propose that strain Groll metabolizes m-cresol by a methyl group oxidation pathway which is an alternate route for the catabolism of this compound under sulfate-reducing conditions.

7.
Appl Environ Microbiol ; 59(7): 2229-38, 1993 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16348996

RESUMO

Anaerobic sewage sludge was used to enrich a methanogenic m-cresol-degrading consortium. 6-Fluoro-3-methylphenol was synthesized and added to subcultures of the consortium with m-cresol. This caused the accumulation of 4-hydroxy-2-methylbenzoic acid. In a separate experiment, the addition of 3-fluorobenzoic acid caused the transient accumulation of 4-hydroxybenzoic acid. Inhibition with bromoethanesulfonic acid caused the accumulation of benzoic acid. Thus, the proposed degradation pathway was m-cresol --> 4-hydroxy-2-methylbenzoic acid --> 4-hydroxybenzoic acid --> benzoic acid. The m-cresol-degrading consortium was able to convert exogenous 4-hydroxybenzoic acid and benzoic acid to methane. In addition, for each metabolite of m-cresol identified, the corresponding fluorinated metabolite was detected, giving the following sequence: 6-fluoro-3-methylphenol --> 5-fluoro-4-hydroxy-2-methylbenzoic acid --> 3-fluoro-4-hydroxybenzoic acid --> 3-fluorobenzoic acid. The second step in each of these pathways is a novel demethylation which was rate limiting. This demethylation reaction would likely facilitate the transformation of the methyl group to methane, which is consistent with the results of a previous study that showed that the methyl carbon of m-[methyl-C]cresol was recovered predominantly as [C]methane (D. J. Roberts, P. M. Fedorak, and S. E. Hrudey, Can. J. Microbiol. 33:335-338, 1987). The final aromatic compound in the proposed route for m-cresol metabolism was benzoic acid, and its detection in these cultures merges the pathway for the methanogenic degradation of m-cresol with those for the anaerobic metabolism of many phenols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...