Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Commun ; 15(1): 1452, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365780

RESUMO

The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics.


Assuntos
Ilhotas Pancreáticas , Microfluídica , Organoides , Engenharia Tecidual/métodos , Endotélio , Ilhotas Pancreáticas/irrigação sanguínea
2.
bioRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034801

RESUMO

Background: The kidney vasculature is exquisitely structured to orchestrate renal function. Structural profiling of the vasculature in intact rodent kidneys, has provided insights into renal haemodynamics and oxygenation, but has never been extended to the human kidney beyond a few vascular generations. We hypothesised that synchrotron-based imaging of a human kidney would enable assessment of vasculature across the whole organ. Methods: An intact kidney from a 63-year-old male was scanned using hierarchical phase-contrast tomography (HiP-CT), followed by semi-automated vessel segmentation and quantitative analysis. These data were compared to published micro-CT data of whole rat kidney. Results: The intact human kidney vascular network was imaged with HiP-CT at 25 µm voxels, representing a 20-fold increase in resolution compared to clinical CT scanners. Our comparative quantitative analysis revealed the number of vessel generations, vascular asymmetry and a structural organisation optimised for minimal resistance to flow, are conserved between species, whereas the normalised radii are not. We further demonstrate regional heterogeneity in vessel geometry between renal cortex, medulla, and hilum, showing how the distance between vessels provides a structural basis for renal oxygenation and hypoxia. Conclusions: Through the application of HiP-CT, we have provided the first quantification of the human renal arterial network, with a resolution comparable to that of light microscopy yet at a scale several orders of magnitude larger than that of a renal punch biopsy. Our findings bridge anatomical scales, profiling blood vessels across the intact human kidney, with implications for renal physiology, biophysical modelling, and tissue engineering.

3.
Opt Express ; 30(11): 19510-19523, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221725

RESUMO

We demonstrate a microfabricated optomechanical accelerometer that is capable of percent-level accuracy without external calibration. To achieve this capability, we use a mechanical model of the device behavior that can be characterized by the thermal noise response along with an optical frequency comb readout method that enables high sensitivity, high bandwidth, high dynamic range, and SI-traceable displacement measurements. The resulting intrinsic accuracy was evaluated over a wide frequency range by comparing to a primary vibration calibration system and local gravity. The average agreement was found to be 2.1 % for the calibration system between 0.1 kHz and 15 kHz and better than 0.2 % for the static acceleration. This capability has the potential to replace costly external calibrations and improve the accuracy of inertial guidance systems and remotely deployed accelerometers. Due to the fundamental nature of the intrinsic accuracy approach, it could be extended to other optomechanical transducers, including force and pressure sensors.

4.
Sci Rep ; 12(1): 12172, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842494

RESUMO

Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin ß4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.


Assuntos
Nefropatias , Podócitos , Albuminúria , Animais , Células Cultivadas , Doxorrubicina , Terapia Genética , Glomérulos Renais , Camundongos , Timosina
5.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35132964

RESUMO

Norrie disease is caused by mutation of the NDP gene, presenting as congenital blindness followed by later onset of hearing loss. Protecting patients from hearing loss is critical for maintaining their quality of life. This study aimed to understand the onset of pathology in cochlear structure and function. By investigating patients and juvenile Ndp-mutant mice, we elucidated the sequence of onset of physiological changes (in auditory brainstem responses, distortion product otoacoustic emissions, endocochlear potential, blood-labyrinth barrier integrity) and determined the cellular, histological, and ultrastructural events leading to hearing loss. We found that cochlear vascular pathology occurs earlier than previously reported and precedes sensorineural hearing loss. The work defines a disease mechanism whereby early malformation of the cochlear microvasculature precedes loss of vessel integrity and decline of endocochlear potential, leading to hearing loss and hair cell death while sparing spiral ganglion cells. This provides essential information on events defining the optimal therapeutic window and indicates that early intervention is needed. In an era of advancing gene therapy and small-molecule technologies, this study establishes Ndp-mutant mice as a platform to test such interventions and has important implications for understanding the progression of hearing loss in Norrie disease.


Assuntos
Cegueira/congênito , Gerenciamento Clínico , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Previsões , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Perda Auditiva Neurossensorial/fisiopatologia , Audição/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Degeneração Retiniana/fisiopatologia , Espasmos Infantis/fisiopatologia , Adolescente , Adulto , Animais , Cegueira/complicações , Cegueira/fisiopatologia , Cegueira/terapia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Seguimentos , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/terapia , Degeneração Retiniana/complicações , Degeneração Retiniana/terapia , Espasmos Infantis/complicações , Espasmos Infantis/terapia , Adulto Jovem
6.
Elife ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076391

RESUMO

Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.


Assuntos
Membrana Basal/patologia , Membrana Basal/fisiologia , Nefropatias/patologia , Rim/fisiologia , Organoides/fisiologia , Animais , Biópsia , Técnicas de Cultura de Células em Três Dimensões/métodos , Linhagem Celular , Pré-Escolar , Colágeno Tipo IV/genética , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Rim/patologia , Nefropatias/genética , Masculino , Camundongos , Células-Tronco Pluripotentes/fisiologia , Proteômica/métodos
7.
Sci Rep ; 11(1): 15529, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330963

RESUMO

Diabetes mellitus (DM) is the leading cause of chronic kidney disease and diabetic nephropathy is widely studied. In contrast, the pathobiology of diabetic urinary bladder disease is less understood despite dysfunctional voiding being common in DM. We hypothesised that diabetic cystopathy has a characteristic molecular signature. We therefore studied bladders of hyperglycaemic and polyuric rats with streptozotocin (STZ)-induced DM. Sixteen weeks after induction of DM, as assessed by RNA arrays, wide-ranging changes of gene expression occurred in DM bladders over and above those induced in bladders of non-hyperglycaemic rats with sucrose-induced polyuria. The altered transcripts included those coding for extracellular matrix regulators and neural molecules. Changes in key genes deregulated in DM rat bladders were also detected in db/db mouse bladders. In DM rat bladders there was reduced birefringent collagen between detrusor muscle bundles, and atomic force microscopy showed a significant reduction in tissue stiffness; neither change was found in bladders of sucrose-treated rats. Thus, altered extracellular matrix with reduced tissue rigidity may contribute to voiding dysfunction in people with long-term DM. These results serve as an informative stepping stone towards understanding the complex pathobiology of diabetic cystopathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Bexiga Urinária/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática , Masculino , Microscopia de Força Atômica , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar , Transcriptoma/genética , Transcriptoma/fisiologia
8.
J Am Soc Nephrol ; 32(7): 1713-1732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049963

RESUMO

BACKGROUND: Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS: Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS: Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS: This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.

9.
Angiogenesis ; 24(2): 271-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33825109

RESUMO

Lymphatic vessels have critical roles in both health and disease and their study is a rapidly evolving area of vascular biology. The consensus on how the first lymphatic vessels arise in the developing embryo has recently shifted. Originally, they were thought to solely derive by sprouting from veins. Since then, several studies have uncovered novel cellular mechanisms and a diversity of contributing cell lineages in the formation of organ lymphatic vasculature. Here, we review the key mechanisms and cell lineages contributing to lymphatic development, discuss the advantages and limitations of experimental techniques used for their study and highlight remaining knowledge gaps that require urgent attention. Emerging technologies should accelerate our understanding of how lymphatic vessels develop normally and how they contribute to disease.


Assuntos
Linhagem da Célula , Células Endoteliais/metabolismo , Linfangiogênese , Vasos Linfáticos/embriologia , Animais , Humanos
10.
Front Physiol ; 12: 599529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716764

RESUMO

The orientation of cells in two-dimensional and three-dimensional space underpins how the kidney develops and responds to disease. The process by which cells orientate themselves within the plane of a tissue is termed planar cell polarity. In this Review, we discuss how planar cell polarity and the proteins that underpin it govern kidney organogenesis and pathology. The importance of planar cell polarity and its constituent proteins in multiple facets of kidney development is emphasised, including ureteric bud branching, tubular morphogenesis and nephron maturation. An overview is given of the relevance of planar cell polarity and its proteins for inherited human renal diseases, including congenital malformations with unknown aetiology and polycystic kidney disease. Finally, recent work is described outlining the influence of planar cell polarity proteins on glomerular diseases and highlight how this fundamental pathway could yield a new treatment paradigm for nephrology.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36452911

RESUMO

Using frequency-agile rapid scanning cavity ring-down spectroscopy, we measured line intensities and line shape parameters of 14N2 16O in air in the (4200)←(0000) and (5000)←(0000) bands near 1.6 µm. The absorption spectra were modeled with multi-spectrum fits of Voigt and speed-dependent Voigt profiles. The measured line intensities and air-broadening parameters exhibit deviations of several percent relative to values provided in HITRAN 2016. Our measured intensities for these two bands have relative combined standard uncertainties of ∼1% which is approximately five times smaller than literature values. Comparison of the present air-broadening and speed-dependent broadening parameters to experimental literature values for other rotation-vibration bands of N2O indicates significant differences in magnitude and J-dependence. For applications requiring high spectral fidelity, these results suggest that the assumption of band-independent line shape parameters is not appropriate.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37554518

RESUMO

This paper outlines the major updates of the line-shape parameters that were performed for the nitrous oxide (N2O) and carbon monoxide (CO) molecules listed in the HITRAN2020 database. We reviewed the collected measurements for the air- and self-broadened N2O and CO spectra to determine proper values for the spectroscopic parameters. Careful comparisons of broadening parameters using the Voigt and speed-dependent Voigt line-shape profiles were performed among various published results for both N2O and CO. Selected data allowed for developing semi-empirical models, which were used to extrapolate/interpolate existing data to update broadening parameters of all the lines of these molecules in the HITRAN database. In addition to the line broadening parameters (and their temperature dependences), the pressure shift values were revised for N2O and CO broadened by air and self for all the bands. The air and self speed-dependence of the broadening parameter for these two molecules were added for every transition as well. Furthermore, we determined the first-order line-mixing parameters using the Exponential Power Gap (EPG) scaling law. These new parameters are now available at HITRAN online.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38516121

RESUMO

We measured air broadening in the (30012) ← (00001) carbon dioxide (CO2) band up to J″=50 using frequency-agile rapid scanning cavity ring-down spectroscopy. By using synthetic air samples with varying levels of nitrogen, oxygen, and argon, multi-spectrum fitting allowed for the collisional broadening terms of each major air component to be simultaneously determined in addition to advanced line shape parameters at atmospherically relevant CO2 mixing ratios. These values were compared to broadener-specific line shape parameters from the literature. Fits to measured spectra were also constrained with results from requantized classical molecular dynamic simulations. We show that this approach enables differentiation between narrowing mechanisms in advanced line shape parameters retrieved from experimental spectra of limited signal-to-noise ratio.

14.
J Am Soc Nephrol ; 31(6): 1178-1190, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32295825

RESUMO

The kidney contains a network of lymphatic vessels that clear fluid, small molecules, and cells from the renal interstitium. Through modulating immune responses and via crosstalk with surrounding renal cells, lymphatic vessels have been implicated in the progression and maintenance of kidney disease. In this Review, we provide an overview of the development, structure, and function of lymphatic vessels in the healthy adult kidney. We then highlight the contributions of lymphatic vessels to multiple forms of renal pathology, emphasizing CKD, transplant rejection, and polycystic kidney disease and discuss strategies to target renal lymphatics using genetic and pharmacologic approaches. Overall, we argue the case for lymphatics playing a fundamental role in renal physiology and pathology and treatments modulating these vessels having therapeutic potential across the spectrum of kidney disease.


Assuntos
Nefropatias/etiologia , Vasos Linfáticos/fisiologia , Imunidade Adaptativa , Rejeição de Enxerto , Humanos , Nefropatias/fisiopatologia , Transplante de Rim/efeitos adversos , Linfa/fisiologia , Linfangiogênese , Vasos Linfáticos/anatomia & histologia , Vasos Linfáticos/citologia , Doenças Renais Policísticas/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
15.
Cell Signal ; 72: 109624, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243961

RESUMO

Whereas targeting the cyst epithelium and its molecular machinery has been the prevailing clinical strategy for polycystic kidney disease, the endothelium, including blood vasculature and lymphatics, is emerging as an important player in this disorder. In this Review, we provide an overview of the structural and functional alterations to blood vasculature and lymphatic vessels in the polycystic kidney. We also discuss evidence for vascular endothelial growth factor signalling, otherwise critical for endothelial cell development and maintenance, as being a fundamental molecular pathway in polycystic kidney disease and a potential therapeutic target for modulating cyst expansion.


Assuntos
Comunicação Celular , Células Endoteliais/patologia , Células Epiteliais/patologia , Doenças Renais Policísticas/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos
16.
Pediatr Nephrol ; 35(6): 1069-1079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31970483

RESUMO

BACKGROUND: Total serum 25-hydroxyvitamin D [25(OH)D] is considered the best marker of vitamin D status and used routinely in clinical practice. However, 25(OH)D is predominantly bound to vitamin D-binding protein (VDBP), and it has been reported that the free-25(OH)D and 25(OH)D loosely bound to albumin fraction correlates better with clinical outcomes. METHODS: We assessed total-25(OH)D, measured free-25(OH)D, and calculated free-25(OH)D and their relationship with VDBP and biomarkers of mineral metabolism in 61 children (22 CKD 2-3, 18 dialysis, and 21 post-transplant). RESULTS: Total-25(OH)D concentrations were comparable across the three groups (p = 0.09), but free- and bioavailable-25(OH)D (free- and albumin-25(OH)D) were significantly lower in the transplant group (both: p = 0.01). Compared to CKD and dialysis patients, the transplant group had significantly higher VDBP concentrations (p = 0.03). In all three groups, total-25(OH)D concentrations were positively associated with measured free-, calculated free-, and bioavailable-25(OH)D. Multivariable regression analysis showed that total-25(OH)D was the only predictor of measured free-25(OH)D concentrations in the dialysis group (ß = 0.9; R2 = 90%). In the transplant group, measured free-25(OH)D concentrations were predicted by both total-25(OH)D and VDBP concentrations (ß = 0.6, - 0.6, respectively; R2 = 80%). Correlations between parathyroid hormone with total-25(OH)D and measured and calculated free-25(OH)D were only observed in the transplant group (all: p < 0.001). CONCLUSIONS: In transplanted patients, VDBP concentrations were significantly higher compared to CKD and dialysis patients, and consequently, free-25(OH)D concentrations were lower, despite a comparable total-25(OH)D concentration. We suggest that free-25(OH)D measures may be required in children with CKD, dialysis, and transplant, with further research required to understand its association with markers of mineral metabolism.


Assuntos
Insuficiência Renal Crônica/sangue , Proteína de Ligação a Vitamina D/sangue , Vitamina D/análogos & derivados , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Transplante de Rim , Masculino , Diálise Renal , Insuficiência Renal Crônica/complicações , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações
18.
Methods Mol Biol ; 2067: 103-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31701448

RESUMO

Microscopic and macroscopic evaluation of biological tissues in three dimensions is becoming increasingly popular. This trend is coincident with the emergence of numerous tissue clearing strategies, and advancements in confocal and two-photon microscopy, enabling the study of intact organs and systems down to cellular and sub-cellular resolution. In this chapter, we describe a wholemount immunofluorescence technique for labeling structures in renal tissue. This technique combined with solvent-based tissue clearing and confocal imaging, with or without two-photon excitation, provides greater structural information than traditional sectioning and staining alone. Given the addition of paraffin embedding to our method, this hybrid protocol offers a powerful approach to combine confocal or two-photon findings with histological and further immunofluorescent analysis within the same tissue.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional/métodos , Rim/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Humanos , Imageamento Tridimensional/instrumentação , Rim/patologia , Camundongos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Software , Solventes/química , Coloração e Rotulagem/métodos , Fluxo de Trabalho
19.
Methods Mol Biol ; 2067: 323-340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31701460

RESUMO

Gene editing using the CRISPR/Cas9 system is an extremely efficient approach for generating mutations within the genomic DNA of immortalized cell lines. This procedure begins with a straightforward cloning step to generate a single plasmid encoding the Cas9 enzyme as well as a synthetic guide RNA (sgRNA) which is selected to target specific sites within the genome. This plasmid is transfected into cells either alone, in order to generate random insertion-deletion alleles ("indels") at the desired locus via the nonhomologous end-joining pathway, or in conjunction with a homology-directed repair template oligonucleotide to generate a specific point mutation. Here we describe a procedure to perform gene editing in IMCD3 and HEK293 cells and to subsequently isolate clonal cell lines carrying mutations of interest.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Alelos , Separação Celular/métodos , Clonagem Molecular/métodos , Citometria de Fluxo/métodos , Células HEK293 , Humanos , Mutação INDEL , RNA Guia de Cinetoplastídeos
20.
Elife ; 82019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31808745

RESUMO

Heterogeneity of lymphatic vessels during embryogenesis is critical for organ-specific lymphatic function. Little is known about lymphatics in the developing kidney, despite their established roles in pathology of the mature organ. We performed three-dimensional imaging to characterize lymphatic vessel formation in the mammalian embryonic kidney at single-cell resolution. In mouse, we visually and quantitatively assessed the development of kidney lymphatic vessels, remodeling from a ring-like anastomosis under the nascent renal pelvis; a site of VEGF-C expression, to form a patent vascular plexus. We identified a heterogenous population of lymphatic endothelial cell clusters in mouse and human embryonic kidneys. Exogenous VEGF-C expanded the lymphatic population in explanted mouse embryonic kidneys. Finally, we characterized complex kidney lymphatic abnormalities in a genetic mouse model of polycystic kidney disease. Our study provides novel insights into the development of kidney lymphatic vasculature; a system which likely has fundamental roles in renal development, physiology and disease.


Assuntos
Rim/metabolismo , Linfangiogênese/genética , Vasos Linfáticos/metabolismo , Doenças Renais Policísticas/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Heterogeneidade Genética , Humanos , Rim/embriologia , Cinética , Vasos Linfáticos/embriologia , Mamíferos/embriologia , Mamíferos/genética , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/metabolismo , Análise Espaço-Temporal , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...