Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 16(1): 199, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771428

RESUMO

Skin-attachable electronics have garnered considerable research attention in health monitoring and artificial intelligence domains, whereas susceptibility to electromagnetic interference (EMI), heat accumulation issues, and ultraviolet (UV)-induced aging problems pose significant constraints on their potential applications. Here, an ultra-elastic, highly breathable, and thermal-comfortable epidermal sensor with exceptional UV-EMI shielding performance and remarkable thermal conductivity is developed for high-fidelity monitoring of multiple human electrophysiological signals. Via filling the elastomeric microfibers with thermally conductive boron nitride nanoparticles and bridging the insulating fiber interfaces by plating Ag nanoparticles (NPs), an interwoven thermal conducting fiber network (0.72 W m-1 K-1) is constructed benefiting from the seamless thermal interfaces, facilitating unimpeded heat dissipation for comfort skin wearing. More excitingly, the elastomeric fiber substrates simultaneously achieve outstanding UV protection (UPF = 143.1) and EMI shielding (SET > 65, X-band) capabilities owing to the high electrical conductivity and surface plasmon resonance of Ag NPs. Furthermore, an electronic textile prepared by printing liquid metal on the UV-EMI shielding and thermally conductive nonwoven textile is finally utilized as an advanced epidermal sensor, which succeeds in monitoring different electrophysiological signals under vigorous electromagnetic interference. This research paves the way for developing protective and environmentally adaptive epidermal electronics for next-generation health regulation.

2.
Nanomicro Lett ; 15(1): 181, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439918

RESUMO

Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skin-attachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling (PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene-ethylene-butylene-styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet-visible-near-infrared light (maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17 °C cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA