Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Muscle Res Cell Motil ; 31(3): 215-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20717711

RESUMO

Mechanical stretch of skeletal muscle activates nitric oxide (NO) production and is an important stimulator of satellite cell proliferation. Further, cyclooxygenase (COX) activity has been shown to promote satellite cell proliferation in response to stretch. Since COX-2 expression in skeletal muscle can be regulated by NO we sought to determine if NO is required for stretch-induced myoblast proliferation and whether supplemental NO can counter the effects of COX-2 and NF-kappaB inhibitors. C2C12 myoblasts were cultured for 24 h, then switched to medium containing either the NOS inhibitor, L-NAME (200 microM), the COX-2 specific inhibitor NS-398 (100 microM), the NF-kappaB inhibiting antioxidant, PDTC (5 mM), the nitric oxide donor, DETA-NONOate (10-100 microM) or no supplement (control) for 24 h. Subgroups of each treatment were exposed to 1 h of 15% cyclic stretch (1 Hz), and were then allowed to proliferate for 24 h before fixing. Proliferation was measured by BrdU incorporation during the last hour before fixing, and DAPI stain. Stretch induced a twofold increase in nuclear number compared to control, and this effect was completely inhibited by L-NAME, NS-398 or PDTC (P < 0.05). Although DETA-NONOate (10 microM) did not affect basal proliferation, the NO-donor augmented the stretch-induced increase in proliferation and rescued stretch-induced proliferation in NS-398-treated cells, but not in PDTC-treated cells. In conclusion, NO, COX-2, and NF-kappaB are necessary for stretch-induced proliferation of myoblasts. Although COX-2 and NF-kappaB are both involved in basal proliferation, NO does not affect basal growth. Thus, NO requires the synergistic effect of stretch in order to induce muscle cell proliferation.


Assuntos
Proliferação de Células , Mioblastos Esqueléticos/metabolismo , Óxido Nítrico/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Mioblastos Esqueléticos/citologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitrobenzenos/farmacologia , Compostos Nitrosos/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Sulfonamidas/farmacologia , Tiocarbamatos/farmacologia , Fatores de Tempo
2.
Muscle Nerve ; 37(2): 203-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18004769

RESUMO

Long-term corticosteroid therapy causes myopathy and can inhibit regeneration of skeletal muscle. Therefore, we hypothesized that corticosteroid exposure reduces satellite cell activity in skeletal myofibers. Male Swiss-Webster mice were injected daily for 8 weeks with prednisolone (GC) or vehicle (control). Single myofibers were isolated from the gastrocnemius, centrifuged to mechanically activate satellite cells, and maintained in culture for 48 h. Both constitutive nitric oxide synthase (NOS) isoforms were reduced in muscle by GC treatment (nNOS: -30%, eNOS: -34%). Fewer myogenic (myoD+) cells emanated from GC myofibers compared to control (-61%, P < 0.05). Supplementation of culture media with the nitric oxide donor, diethylenetriamine NONOate (DETA-NO; 5-50 microM), caused a dose-dependent increase in the number of myoD+ cells arising from both control and GC myofibers (P < 0.05), and 10 and 50 microM DETA-NO eliminated the GC-induced deficit in myogenic cells (P > 0.05). Therefore, supplementation of GC myofibers with DETA-NO restores satellite cell activity to control levels. Nitric oxide production could be an important therapeutic target for the prevention of corticosteroid myopathy.


Assuntos
Glucocorticoides/farmacologia , Óxido Nítrico Sintase/metabolismo , Prednisolona/farmacologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Análise de Variância , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Camundongos , Proteína MyoD/metabolismo , Doadores de Óxido Nítrico/farmacologia , Isoformas de Proteínas/metabolismo , Triazenos/farmacologia
3.
Am J Physiol Endocrinol Metab ; 293(4): E1062-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17666490

RESUMO

Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.


Assuntos
Adenilato Quinase/metabolismo , Transportador de Glucose Tipo 4/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Células Cultivadas , GMP Cíclico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Modelos Biológicos , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Ribonucleotídeos/farmacologia , Transdução de Sinais
4.
J Muscle Res Cell Motil ; 27(8): 577-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17051348

RESUMO

The semi-essential amino acid, L-arginine (L-Arg), is the substrate for endogenous synthesis of nitric oxide, a molecule that is involved in myoblast proliferation and fusion. Since L-Arg supply may limit nitric oxide synthase (NOS) activity in endothelial cells, we examined L-Arg supplementation in differentiating mouse myoblasts and tested the hypothesis that L-Arg exerts direct effects on myoblast fusion via augmentation of endogenous nitric oxide production. C(2)C(12) myoblasts in differentiation media received one of the following treatments for 120 h: 1 mM L-Arg, 0.1 mM N-nitro-L-arginine methyl ester (L-NAME), L-Arg + L-NAME, 10 mM L-Lysine, or no supplement (Control). Cultures were fixed and stained with hematoxylin and eosin for microphotometric image analysis of myotube density, nuclear density, and fusion index (% of total nuclei in myotubes). Endogenous production of nitric oxide during the treatment period peaked between 24 and 48 h. L-Arg amplified nitric oxide production between 0 and 24 h and increased myotube density, total nuclei number, and nuclear fusion index. These L-Arg effects were prevented by the NOS inhibitor, L-NAME. Further, L-Lysine, a competitive inhibitor of L-Arg uptake, repressed nitric oxide production and reduced myotube density and fusion index. In summary, L-Arg augments myotube formation and increases nitric oxide production in a process limited by cellular L-Arg uptake.


Assuntos
Arginina/farmacologia , Fusão de Membrana/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Animais , Canais de Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Histocitoquímica , Camundongos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/análise , Nitritos/análise , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
5.
Med Sci Sports Exerc ; 38(5): 840-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672835

RESUMO

PURPOSE: We sought to determine whether cyclooxygenase (COX) activity is necessary for overload-induced growth of adult rat skeletal muscle, and whether nitric oxide synthase (NOS) activity is involved in upregulation of COX messenger RNA (mRNA) expression in skeletal muscle. METHODS: Unilateral surgical removal of the gastrocnemius and soleus was performed on the right hindlimb of 16 female Sprague-Dawley rats (approximately 230 g) to induce chronic overload (OL) of the plantaris for 14 d, with sham surgeries performed on the contralateral leg as a normally loaded (NL) control. Half of the rats were treated with the nonspecific COX inhibitor, ibuprofen (0.2 mg.mL(-1) in drinking water; approximately 20 mg.kg(-1).d(-1)). In a second experiment, the plantaris was unilaterally overloaded for 5 or 14 d in male rats (approximately 350 g; N = 16 rats per time point) and half of the animals were treated with the NOS inhibitor, L-NAME (0.75 mg.mL(-1) in drinking water; approximately 90 mg.kg(-1).d(-1)). RESULTS: Ibuprofen treatment inhibited plantaris hypertrophy by approximately 50% (P < 0.05) following 14 d of OL, as did L-NAME treatment (P < 0.05). COX-1 and COX-2 mRNA did not differ between any groups at 5 d. At 14 d, however, L-NAME caused a 30-fold increase in plantaris COX-1 mRNA expression independent of loading condition. Additionally, OL induced a 20-fold increase in COX-2 mRNA expression compared with NL (P < 0.05) at 14 d, without affecting COX-1 mRNA level. L-NAME treatment significantly inhibited OL-induced expression of COX-2 mRNA. CONCLUSION: COX activity is important for in vivo muscle hypertrophy, and plantaris overload is associated with NOS activity-dependent COX-2 expression.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Ibuprofeno/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Animais , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Inibidores Enzimáticos/farmacologia , Feminino , Florida , Humanos , Hipertrofia/tratamento farmacológico , Hipertrofia/prevenção & controle , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...