Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Burns Trauma ; 12: tkae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887221

RESUMO

Background: Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods: HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results: In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions: Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.

2.
Behav Brain Res ; 468: 114999, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38615978

RESUMO

Itch is one of the most common clinical symptoms in patients with diseases of the skin, liver, or kidney, and it strongly triggers aversive emotion and scratching behavior. Previous studies have confirmed the role of the prelimbic cortex (Prl) and the nucleus accumbens core (NAcC), which are reward and motivation regulatory centers, in the regulation of itch. However, it is currently unclear whether the Prl-NAcC projection, an important pathway connecting these two brain regions, is involved in the regulation of itch and its associated negative emotions. In this study, rat models of acute neck and cheek itch were established by subcutaneous injection of 5-HT, compound 48/80, or chloroquine. Immunofluorescence experiments determined that the number of c-Fos-immunopositive neurons in the Prl increased during acute itch. Chemogenetic inhibition of Prl glutamatergic neurons or Prl-NAcC glutamatergic projections can inhibit both histaminergic and nonhistaminergic itch-scratching behaviors and rectify the itch-related conditioned place aversion (CPA) behavior associated with nonhistaminergic itch. The Prl-NAcC projection may play an important role in the positive regulation of itch-scratching behavior by mediating the negative emotions related to itch.


Assuntos
Vias Neurais , Núcleo Accumbens , Prurido , Ratos Sprague-Dawley , Animais , Prurido/fisiopatologia , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Masculino , Ratos , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Modelos Animais de Doenças , Neurônios/fisiologia , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Neurosci Bull ; 39(12): 1807-1822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37553505

RESUMO

Itch is an unpleasant sensation that urges people and animals to scratch. Neuroimaging studies on itch have yielded extensive correlations with diverse cortical and subcortical regions, including the insular lobe. However, the role and functional specificity of the insular cortex (IC) and its subdivisions in itch mediation remains unclear. Here, we demonstrated by immunohistochemistry and fiber photometry tests, that neurons in both the anterior insular cortex (AIC) and the posterior insular cortex (PIC) are activated during acute itch processes. Pharmacogenetic experiments revealed that nonselective inhibition of global AIC neurons, or selective inhibition of the activity of glutaminergic neurons in the AIC, reduced the scratching behaviors induced by intradermal injection of 5-hydroxytryptamine (5-HT), but not those induced by compound 48/80. However, both nonselective inhibition of global PIC neurons and selective inhibition of glutaminergic neurons in the PIC failed to affect the itching-scratching behaviors induced by either 5-HT or compound 48/80. In addition, pharmacogenetic inhibition of AIC glutaminergic neurons effectively blocked itch-associated conditioned place aversion behavior, and inhibition of AIC glutaminergic neurons projecting to the prelimbic cortex significantly suppressed 5-HT-evoked scratching. These findings provide preliminary evidence that the AIC is involved, at least partially via aversive emotion mediation, in the regulation of 5-HT-, but not compound 48/80-induced itch.


Assuntos
Córtex Insular , Serotonina , Humanos , Animais , Prurido/induzido quimicamente , Córtex Cerebral/fisiologia , Neurônios
4.
Behav Brain Res ; 443: 114306, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36682500

RESUMO

Itch is an unpleasant sensation followed by an intense desire to scratch. Previous researches have advanced our understanding about the role of anterior cingulate cortex and prelimbic cortex in itch modulation, whereas little is known about the effects of retrosplenial cortex (RSC) during this process. Here we firstly confirmed that the neuronal activity of dysgranular RSC (RSCd) is significantly elevated during itch-scratching processing through c-Fos immunohistochemistry and fiber photometry recording. Then with designer receptors exclusively activated by designer drugs approaches, we found that pharmacogenetic inhibition of global RSCd neurons attenuated the number of scratching bouts as well as the cumulative duration of scratching bouts elicited by both 5-HT or compound 48/80 injection into rats' nape or cheek; selective inhibition of the pyramidal neurons in RSCd, or of the excitatory projections from caudal anterior cingulate cortex (cACC) to RSCd, demonstrated the similar effects of decreasing itch-related scratching induced by both 5-HT or compound 48/80. Pharmacogenetic intervention of the neuronal or circuitry activities did not affect rats' motor ability. This study presents direct evidence that pyramidal neurons in RSCd, and the excitatory projection from cACC to RSCd are critically involved in central regulation of both histaminergic and nonhistaminergic itch.


Assuntos
Giro do Cíngulo , Serotonina , Ratos , Animais , Prurido , Córtex Cerebral/fisiologia , Canais de Cloreto
5.
Exp Neurol ; 354: 114101, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35504346

RESUMO

Itch is an unpleasant sensation that induces the desire to scratch. Except for a sketchy map focusing on neural mechanisms underlying itch processing being drawn at the peripheral and spinal level over the past decades, the brain mechanisms remain poorly understood. Several previous studies indicated that anterior cingulate cortex (ACC) and prelimbic cortex (PrL), two subregions of the medial prefrontal cortex (mPFC) play an important role in regulating itch processing. However, the knowledge about whether infralimbic cortex (IL), another subregion of mPFC, is involved in modulating itch processing remains unclear. Here, we showed that the activity of IL excitatory pyramidal neurons was significantly elevated during itch-related scratching, and pharmacogenetic inhibition of IL pyramidal neurons significantly impaired itch-related scratching. Moreover, IL-medial striatum (MS) projections were verified as a critical neural pathway for modulating itch processing. Therefore, the present study firstly presents the regulatory function of IL pyramidal neurons during itch processing and also reveals that IL-MS projections are involved in modulating the itch processing.


Assuntos
Giro do Cíngulo , Córtex Pré-Frontal , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Humanos , Vias Neurais/fisiologia , Córtex Pré-Frontal/metabolismo , Prurido/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...