Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 40(5): 381-382, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503578

RESUMO

Recently, Pham et al. used an array of model systems to uncover a role for the enzyme methionine adenosyltransferase (MAT)-1A, which is mainly expressed in liver, in both sensing formaldehyde and regulating transcriptional responses that protect against it. This provides a new lens for understanding the effects of formaldehyde on gene regulation.


Assuntos
Epigênese Genética , Formaldeído , Metionina Adenosiltransferase , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Humanos , Carbono/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética
2.
Chembiochem ; 25(8): e202400005, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511872

RESUMO

Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin species for this purpose. We then consider ways to add new dimensions to these experimental regimens, principally by releasing less reactive (i. e., more selective) (preter)natural electrophiles. Although electrophile release methods may have lower resolution and label fewer proteins than biotinylation methods, their ability to probe simultaneously protein function and locale raises new and interesting possibilities for the field.


Assuntos
Biotina , Proteoma , Biotinilação
3.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335096

RESUMO

Reactive metabolites and related electrophilic drugs are among the most challenging small molecules to study. Conventional approaches to deconstruct the mode of action (MOA) of such molecules leverage bulk treatment of experimental specimens with an excess of a specific reactive species. In this approach, the high reactivity of electrophiles renders non-discriminate labeling of the proteome in a time- and context-dependent manner; redox-sensitive proteins and processes can also be indirectly and often irreversibly affected. Against such a backdrop of innumerable potential targets and indirect secondary effects, linking phenotype to specific target engagement remains a complex task. Zebrafish targeting reactive electrophiles and oxidants (Z-REX)-an on-demand reactive-electrophile delivery platform adapted for use in larval zebrafish-is designed to deliver electrophiles to a specific protein of interest (POI) in otherwise unperturbed live fish embryos. Key features of this technique include a low level of invasiveness, along with dosage-, chemotype-, and spatiotemporally-controlled precision electrophile delivery. Thus, in conjunction with a unique suite of controls, this technique sidesteps off-target effects and systemic toxicity, otherwise observed following uncontrolled bulk exposure of animals to reactive electrophiles and pleiotropic electrophilic drugs. Leveraging Z-REX, researchers can establish a foothold in the understanding of how individual stress responses and signaling outputs are altered as a result of specific reactive ligand engagement with a specific POI, under near-physiologic conditions in intact living animals.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Preparações Farmacêuticas , Larva/metabolismo , Oxirredução , Proteínas/metabolismo
5.
Nat Protoc ; 18(5): 1379-1415, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020146

RESUMO

This Protocol Extension describes the adaptation of an existing Protocol detailing the use of targetable reactive electrophiles and oxidants, an on-demand redox targeting toolset in cultured cells. The adaptation described here is for use of reactive electrophiles and oxidants technologies in live zebrafish embryos (Z-REX). Zebrafish embryos expressing a Halo-tagged protein of interest (POI)-either ubiquitously or tissue specifically-are treated with a HaloTag-specific small-molecule probe housing a photocaged reactive electrophile (either natural electrophiles or synthetic electrophilic drug-like fragments). The reactive electrophile is then photouncaged at a user-defined time, enabling proximity-assisted electrophile-modification of the POI. Functional and phenotypic ramifications of POI-specific modification can then be monitored, by coupling to standard downstream assays, such as click chemistry-based POI-labeling and target-occupancy quantification; immunofluorescence or live imaging; RNA-sequencing and real-time quantitative polymerase chain reaction analyses of downstream-transcript modulations. Transient expression of requisite Halo-POI in zebrafish embryos is achieved by messenger RNA injection. Procedures associated with generation of transgenic zebrafish expressing a tissue-specific Halo-POI are also described. The Z-REX experiments can be completed in <1 week using standard techniques. To successfully execute Z-REX, researchers should have basic skills in fish husbandry, imaging and pathway analysis. Experience with protein or proteome manipulation is useful. This Protocol Extension is aimed at helping chemical biologists study precision redox events in a model organism and fish biologists perform redox chemical biology.


Assuntos
Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Larva/metabolismo , Proteínas/metabolismo , Oxirredução , Oxidantes/metabolismo
6.
RSC Chem Biol ; 4(2): 110-120, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794020

RESUMO

First established in the seventies, proteomics, chemoproteomics, and most recently, spatial/proximity-proteomics technologies have empowered researchers with new capabilities to illuminate cellular communication networks that govern sophisticated decision-making processes. With an ever-growing inventory of these advanced proteomics tools, the onus is upon the researchers to understand their individual advantages and limitations, such that we can ensure rigorous implementation and conclusions derived from critical data interpretations backed up by orthogonal series of functional validations. This perspective-based on the authors' experience in applying varied proteomics workflows in complex living models-underlines key book-keeping considerations, comparing and contrasting most-commonly-deployed modern proteomics profiling technologies. We hope this article stimulates thoughts among expert users and equips new-comers with practical knowhow of what has become an indispensable tool in chemical biology, drug discovery, and broader life-science investigations.

7.
Autophagy Rep ; 2(1): 2277584, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38510643

RESUMO

The caspase-like protease MALT1 promotes immune responses and oncogenesis in mammals by activating the transcription factor NF-κB. MALT1 is remarkably conserved from mammals to simple metazoans devoid of NF-κB homologs, like the nematode C. elegans. To discover more ancient, NF-κB -independent MALT1 functions, we analysed the phenotype of C. elegans upon silencing of MALT-1 expression systemically or in a tissue-specific manner. MALT-1 silencing in the intestine caused a significant increase in life span, whereas intestinal overexpression of MALT-1 shortened life expectancy. Interestingly, MALT-1-deficient animals showed higher constitutive levels of autophagy in the intestine, which were particularly evident in aged or starved nematodes. Silencing of the autophagy regulators ATG-13, BEC-1 or LGG-2, but not the TOR homolog LET-363, reversed lifespan extension caused by MALT-1 deficiency. These findings suggest that MALT-1 limits the lifespan of C. elegans by acting as an inhibitor of an early step of autophagy in the intestine.

8.
Subcell Biochem ; 99: 155-197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36151376

RESUMO

Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.


Assuntos
Ribonucleotídeo Redutases , Animais , Desoxirribonucleotídeos , Mamíferos , Oxirredutases , Ribonucleotídeo Redutases/química , Ribonucleotídeos
9.
Bioorg Med Chem Lett ; 71: 128766, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537607

RESUMO

Here we draw insights from the latest serendipitous findings made on the opposing roles of a proposed drug-target protein Keap1. We weigh up how natural reactive electrophiles and electrophilic small-molecule drugs in clinical use directly impinge on seemingly conflicting, yet both Keap1-electrophile-modification-dependent, cell-survival- vs. cell-death-promoting behaviors. In the process, we convey how understanding reactive chemical-signal regulation at the single-protein-specific level is an enabling necessity in deconstructing otherwise intricate reactive-small-molecule-responsive cellular pathways. We hope this opinion piece further spurs the broader interests of basic and pharmaceutical research communities toward better understanding of molecular mechanisms underpinning reactive small-molecule-regulated signaling subsystems.


Assuntos
Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
10.
ACS Chem Biol ; 17(6): 1285-1292, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35603432

RESUMO

Here we discuss "hidden variables", which are typically introduced during an experiment as a consequence of the application of two independent variables together to create a stimulus. With increased sophistication in modern chemical biology tools and related precision interrogation techniques, hidden variables have become integral to many chemical biologists' routine experiments. For instance, they can appear in the use of light-activatable chemical probes (e.g., µMap, T-REX), or stimulus-induced enzyme activation (e.g., APEX). Unfortunately, control experiments assess only how independent variables affect measured outcomes and not the multiple differences between the two independent variables and the twain. We outline ways to account for potential hidden variables in experimental design and data interpretation as a means to aid developers of new methods, particularly those involving light-driven techniques, chemical activation, or biorthogonal chemistries, to better incorporate well-controlled procedures.

11.
Chem Res Toxicol ; 35(10): 1636-1648, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35394758

RESUMO

Our bodies produce a host of electrophilic species that can label specific endogenous proteins in cells. The signaling roles of these molecules are under active debate. However, in our opinion, it is becoming increasingly likely that electrophiles can rewire cellular signaling processes at endogenous levels. Attention is turning more to understanding how nuanced electrophile signaling in cells is. In this Perspective, we describe recent work from our laboratory that has started to inform on different levels of context-specific regulation of proteins by electrophiles. We discuss the relevance of these data to the field and to the broader application of electrophile signaling to precision medicine development, beyond the traditional views of their pleiotropic cytotoxic roles.


Assuntos
Proteínas , Transdução de Sinais , Proteínas/metabolismo , Transdução de Sinais/fisiologia
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082156

RESUMO

Enzyme-assisted posttranslational modifications (PTMs) constitute a major means of signaling across different cellular compartments. However, how nonenzymatic PTMs-despite their direct relevance to covalent drug development-impinge on cross-compartment signaling remains inaccessible as current target-identification (target-ID) technologies offer limited spatiotemporal resolution, and proximity mapping tools are also not guided by specific, biologically-relevant, ligand chemotypes. Here we establish a quantitative and direct profiling platform (Localis-rex) that ranks responsivity of compartmentalized subproteomes to nonenzymatic PTMs. In a setup that contrasts nucleus- vs. cytoplasm-specific responsivity to reactive-metabolite modification (hydroxynonenylation), ∼40% of the top-enriched protein sensors investigated respond in compartments of nonprimary origin or where the canonical activity of the protein sensor is inoperative. CDK9-a primarily nuclear-localized kinase-was hydroxynonenylated only in the cytoplasm. Site-specific CDK9 hydroxynonenylation-which we identified in untreated cells-drives its nuclear translocation, downregulating RNA-polymerase-II activity, through a mechanism distinct from that of commonly used CDK9 inhibitors. Taken together, this work documents an unmet approach to quantitatively profile and decode localized and context-specific signaling/signal-propagation programs orchestrated by reactive covalent ligands.


Assuntos
Proteínas/genética , Proteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Células RAW 264.7 , Transdução de Sinais/fisiologia , Transcrição Gênica/genética
13.
Chembiochem ; 23(7): e202100051, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826211

RESUMO

For several years, drugs with reactive electrophilic appendages have been developed. These units typically confer prolonged residence time of the drugs on their protein targets, and may assist targeting shallow binding sites and/or improving the drug-protein target spectrum. Studies on natural electrophilic molecules have indicated that, in many instances, natural electrophiles use similar mechanisms to alter signaling pathways. However, natural reactive species are also endowed with other important mechanisms to hone signaling properties that are uncommon in drug design. These include ability to be active at low occupancy and elevated inhibitor kinetics. Herein, we discuss how we have begun to harness these properties in inhibitor design.


Assuntos
Desenho de Fármacos , Transdução de Sinais , Cinética , Proteínas/metabolismo
14.
Chem Soc Rev ; 50(22): 12269-12291, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779447

RESUMO

In this tutorial review, we compare and contrast the chemical mechanisms of electrophile/oxidant sensing, and the molecular mechanisms of signal propagation. We critically analyze biological systems in which these different pathways are believed to be manifest and what the data really mean. Finally, we discuss applications of this knowledge to disease treatment and drug development.


Assuntos
Oxidantes , Gêmeos Monozigóticos , Humanos , Transdução de Sinais
15.
RSC Med Chem ; 12(11): 1797-1807, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825181

RESUMO

Of the manifold concepts in drug discovery and design, covalent drugs have re-emerged as one of the most promising over the past 20-or so years. All such drugs harness the ability of a covalent bond to drive an interaction between a target biomolecule, typically a protein, and a small molecule. Formation of a covalent bond necessarily prolongs target engagement, opening avenues to targeting shallower binding sites, protein complexes, and other difficult to drug manifolds, amongst other virtues. This opinion piece discusses frameworks around which to develop covalent drugs. Our argument, based on results from our research program on natural electrophile signaling, is that targeting specific residues innately involved in native signaling programs are ideally poised to be targeted by covalent drugs. We outline ways to identify electrophile-sensing residues, and discuss how studying ramifications of innate signaling by endogenous molecules can provide a means to predict drug mechanism and function and assess on- versus off-target behaviors.

16.
Nat Commun ; 12(1): 5736, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593792

RESUMO

Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1-ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Fumarato de Dimetilo/farmacologia , Imunossupressores/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas dos Microfilamentos/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Embrião de Mamíferos , Embrião não Mamífero , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Peixe-Zebra
17.
ChemMedChem ; 16(15): 2288-2314, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811458

RESUMO

CoVID-19 is a multi-symptomatic disease which has made a global impact due to its ability to spread rapidly, and its relatively high mortality rate. Beyond the heroic efforts to develop vaccines, which we do not discuss herein, the response of scientists and clinicians to this complex problem has reflected the need to detect CoVID-19 rapidly, to diagnose patients likely to show adverse symptoms, and to treat severe and critical CoVID-19. Here we aim to encapsulate these varied and sometimes conflicting approaches and the resulting data in terms of chemistry and biology. In the process we highlight emerging concepts, and potential future applications that may arise out of this immense effort.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/efeitos dos fármacos , COVID-19/epidemiologia , Teste Sorológico para COVID-19 , Reposicionamento de Medicamentos , Humanos , Colaboração Intersetorial , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
18.
Acc Chem Res ; 54(3): 618-631, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33228351

RESUMO

Here we provide a personal account of innovation and design principles underpinning a method to interrogate precision electrophile signaling that has come to be known as "REX technologies". This Account is framed in the context of trying to improve methods of target mining and understanding of individual target-ligand engagement by a specific natural electrophile and the ramifications of this labeling event in cells and organisms. We start by explaining from a practical standpoint why gleaning such understanding is critical: we are constantly assailed by a battery of electrophilic molecules that exist as a consequence of diet, food preparation, ineluctable endogenous metabolic processes, and potentially disease. The resulting molecules, which are detectable in the body, appear to be able to modify function of specific proteins. Aside from potentially being biologically relevant in their own right, these labeling events are essentially identical to protein-covalent drug interactions. Thus, on what proteins and even in what ways a covalent drug will work can be understood through the eyes of natural electrophiles; extending this logic leads to the postulate that target identification of specific electrophiles can inform on drug design. However, when we entered this field, there was no way to interrogate how a specific labeling event impacted a specific protein in an unperturbed cell. Methods to evaluate stoichiometry of labeling, and even chemospecificity of a specific phenotype were limited. There were further no generally accepted ways to study electrophile signaling that did not hugely disturb physiology.We developed T-REX, a method to study single-protein-specific electrophile engagement, to interrogate how single-protein electrophile labeling shapes pathway flux. Using T-REX, we discovered that labeling of several proteins by a specific electrophile, even at low occupancy, leads to biologically relevant signaling outputs. Further experimentation using T-REX showed that in some instances, single-protein isoforms were electrophile responsive against other isoforms, such as Akt3. Selective electrophile-labeling of Akt3 elicited inhibition of Akt-pathway flux in cells and in zebrafish embryos. Using these data, we rationally designed a molecule to selectively target Akt3. This was a fusion of the naturally derived electrophile and an isoform-nonspecific, reversible Akt inhibitor in phase-II trials, MK-2206. The resulting molecule was a selective inhibitor of Akt3 and was shown to fare better than MK-2206 in breast cancer xenograft mouse models. Recently, we have also developed a means to screen electrophile sensors that is unbiased and uses a precise burst of electrophiles. Using this method, dubbed G-REX, in conjunction with T-REX, we discovered new DNA-damage response upregulation pathways orchestrated by simple natural electrophiles. We thus emphasize how deriving a quantitative understanding of electrophile signaling that is linked to thorough and precise mechanistic studies can open doors to numerous medicinally and biologically relevant insights, from gleaning better understanding of target engagement and target mining to rational design of targeted covalent medicines.


Assuntos
Preparações Farmacêuticas/química , Proteínas Proto-Oncogênicas c-akt/química , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/metabolismo , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Ligantes , Camundongos , Oxidantes/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transplante Heterólogo
19.
Chembiochem ; 22(5): 814-817, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33174365

RESUMO

The pressing need for innovation in drug discovery is spurring the emergence of drugs that turn on protein function, as opposed to shutting activity down. Several pharmacophores usher protein target gain-of-function, for instance: PROTACs promote protein target degradation; other drug candidates have been reported to function through dominant-negative inhibition of their target enzyme. Such classes of molecules are typically active at low target occupancy and display numerous advantages relative to canonical inhibitors, whose function is intrinsically tied to achieving, or exceeding a threshold occupancy. However, our ability to generally tap into gain-of-function processes through small molecule interventions is overall in its infancy. Herein, I outline how chemical biology is poised to help us bring this powerful idea to fruition. I further outline means through which gain-of-function events can be identified and harnessed.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Proteínas/metabolismo , Proteólise , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química
20.
ACS Cent Sci ; 6(6): 892-902, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607436

RESUMO

Off-target effects continue to impede disease interventions, particularly when targeting a specific protein within a family of similar proteins, such as kinase isoforms that play tumor-subtype-specific roles in cancers. Exploiting the specific electrophilic-metabolite-sensing capability of Akt3, versus moderate or no sensing, respectively, by Akt2 and Akt1, we describe a first-in-class functionally Akt3-selective covalent inhibitor [MK-H(F)NE], wherein the electrophilic core is derived from the native reactive lipid metabolite HNE. Mechanistic profiling and pathway interrogations point to retention of the metabolite's structure-as opposed to implicit electrophilicity-as being essential for biasing isoform preference, which we found translates to tumor-subtype specificity against pten-null triple-negative breast cancers (TNBCs). MK-H(F)NE further enables novel downstream target identification specific to Akt3-function in disease. In TNBC xenografts, MK-H(F)NE fares better than reversible pan-Akt-inhibitors and does not show commonly observed side-effects associated with Akt1-inhibition. Inhibitors derived from native-metabolite sensing are thus an enabling plan-of-action for unmasking kinase-isoform-biased molecular targets and tumor-subtype-specific interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...