Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 160: 110070, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35696780

RESUMO

A novel polymer support was prepared by curing of epoxy resin in ethanol solution in the macropores of a melamine sponge. The produced polymer gel could uniformly deposit on the surface of melamine in either porous or nonporous morphology. The composite sponge with porous coating can be used as a large-sized and well-mass transferred support for the immobilization of ß-galactosidase from Bacillus circulans through method of adsorption and crosslinking, and a column reactor was made for the preparation of N-acetyllactosamine in a sealed circulation way. The porosity and specific surface area of the support were 91.6 % and 46 m2/g, respectively. The loading amount and the specific activity of immobilized ß-galactosidase under the optimal immobilization conditions were 41.2 mg/gsupport and 16.5 U/mgprotein, respectively. In the biosynthesis of N-acetyllactosamine lactose and N-acetylglucosamine were used as donor and acceptor, respectively. Under optimized conditions the N-acetyllactosamine yield reached 54 % within 150 min at 50 °C. After 10 cycles, the immobilized ß-galactosidase retained 70 % of the original activity.


Assuntos
Enzimas Imobilizadas , Polímeros , Amino Açúcares , Lactose , beta-Galactosidase
2.
Enzyme Microb Technol ; 142: 109696, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33220874

RESUMO

Novel nano-composites were prepared by coating epoxy resin-based cationic polymer in nano-thickness via in-situ curing on the nano-wall of macroporous SiO2 with pore size of 0.5∼1 µm. By changing the thickness of polymer coating the specific surface area and porosity varied in range of 115∼74 m2/g and 90.4∼83.9 %, respectively. Through ion exchange phospholipase D (PLD, from Streptomyces sp) was efficiently immobilized on the nano-composites as support and the immobilized PLD was applied for the highly efficient synthesis of phosphatidylserine (PS). The loading amount of PLD on the nano-composited support reached to a maximum of 90.2 mg/gsupport, 4 times as high as that on the pure macroporous silica. The specific activity of the immobilized PLD reached as high as 16,230 U/gprotein, while that of free PLD was 18,780 U/gprotein. Under a wide range of temperature and pH the stability and activity of the immobilized PLD were greatly improved as compared with the free ones. Under optimized conditions at 45 °C and pH 7.0, the PS yield reached as high as 96.2 % within 40 min. After 28 days storage the immobilized PLD retained 82.2 % of original activity, and after 12 cycling reuses it retained 79.3 % of PS yield, which indicated that the immobilized PLD exhibited good stability.


Assuntos
Fosfolipase D , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Fosfatidilserinas , Fosfolipase D/metabolismo , Polímeros , Dióxido de Silício , Temperatura
3.
Int J Biol Macromol ; 141: 60-67, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31446108

RESUMO

In this article, novel epoxy resin-based hierarchical porous polymers (HPSs) have been prepared through a non-sol-gel and template-free approach using crystalline trimethylolpropane (TMP) as porogen. The polymers exhibit dimensional stability and possess 3-dimentional interconnected multi-scale pores. In range of 50 µm~10 nm are ultra-macro-pore in between skeleton, macro-pore on skeleton and meso-pore in network, respectively. The porosity and specific surface area can be adjusted in range of 91.2-82.5% and 225-156 m2/g, respectively. Using three kinds of hierarchical porous polymers as supports phospholipase D (PLD) was effectively immobilized through physical adsorption. Owing to high porosity of the support and improvement of mass transfer the loading amount of PLD reached as high as 223 mg/gsupport and the corresponding specific activity achieved up to 3.75 × 103 U/gsupport. Under optimized conditions and the phosphatidylserine (PS) yield reached 95.5% within 40 min at 45 °C. The immobilized PLD exhibited not only better storage stability and but also resistance to pH and thermal inactivation than free PLD. It was found that 73.5% of PS yield retained after 12 cycling reuses.


Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Resinas Epóxi/química , Fosfolipase D/química , Streptomyces/enzimologia , Porosidade
4.
ACS Appl Mater Interfaces ; 11(9): 9136-9143, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30763061

RESUMO

HTiNbO5 has been widely investigated in many fields because of its distinctive properties such as good redox activity, high photocatalytic activity, and environmental benignancy. Here, this work reports the synthesis of one-dimensional H0.92K0.08TiNbO5 nanowires via simple electrospinning followed by an ion-exchange reaction. The H0.92K0.08TiNbO5 nanowires consist of many small "lumps" with a uniform diameter distribution of around 150 nm. Used as an anode for lithium-ion batteries, H0.92K0.08TiNbO5 nanowires exhibit high capacity, fast electrochemical kinetics, and high performance of lithium-ion uptake. A capacity of 144.1 mA h g-1 can be carried by H0.92K0.08TiNbO5 nanowires at 0.5 C in the initial charge, and even after 150 cycles, the reversible capacity can remain at 123.7 mA h g-1 with an excellent capacity retention of 85.84%. For H0.92K0.08TiNbO5 nanowires, the diffusion coefficient of lithium ions is 1.97 × 10-11 cm2 s-1, which promotes the lithium-ion uptake effectively. The outstanding electrochemical performance is ascribed to its morphology and the formation of a stable phase during cycling. In addition, the in situ X-ray diffraction and ex situ transmission electron microscopy techniques are applied to reveal its lithium storage mechanism, which proves the structure stability and electrochemical reversibility, thus achieving high-performance lithium-ion uptake. All these advantages demonstrate that H0.92K0.08TiNbO5 nanowires can be a possible alternative anode material for rechargeable batteries.

5.
Int J Biol Macromol ; 117: 1188-1194, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894783

RESUMO

Phospholipase D (PLD) was effectively immobilized on a ZnO nanowires/macroporous SiO2 composite support through an in-situ cross-linking method. An anionic and long-chained bi-epoxy cross-linker was used by adsorbing on the surface of ZnO nanowires through static interaction before cross-linking. Under the fine control of in-situ cross-linking the immobilized PLD has loading amount as high as 113.7 mg/gsupport, possessing high specific activity from 13,987 to 16,142 U/gprotein in all the range of loading amount. The immobilized PLD showed high activity and stability in catalyzing the conversion of phosphatidylcholine (PC) to phosphatidylserine (PS). The reaction conditions such as loading amount of PLD, substrate molar ratio, temperature, solution pH, and reaction time were optimized for the finding of best synthetic process. Under optimized conditions and the PS yield reached 94.8% within 40 min at 50 °C. The immobilized PLD exhibited not only better thermostability and resistance to pH inactivation than free PLD but also the greatly improved storage stability and reusability. It was found that 81.5% of initial activity retained after incubation at 4 °C for 60 days and that 80.4% of PS yield retained after 13 cycling reuses.


Assuntos
Nanotecnologia , Fosfatidilserinas/síntese química , Fosfolipase D/química , Biocatálise , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Nanocompostos/química , Fosfatidilserinas/química , Análise Espectral Raman , Fatores de Tempo
6.
Appl Biochem Biotechnol ; 184(3): 1009-1023, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28933034

RESUMO

A novel ZnO nanowire/macroporous SiO2 composite was used as a support to immobilize chloroperoxidase (CPO) by in situ cross-linking method. An anionic bi-epoxy compound was synthesized and used as a long-chained anionic cross-linker, and it was adsorbed on the surface of ZnO nanowires through static interaction before reaction with CPO, creating a new approach to change the structure, property, and catalytic performance of the produced cross-linking enzyme aggregates (CLEAs) of CPO. The immobilized CPO showed high activity in the decolorization of three azo dyes. The effect of various conditions such as the loading amount of CPO, solution pH, temperature, and dye concentration was optimized on the decolorization. Under optimized conditions, the decolorization percentage of Acid Blue 113, Direct Black 38, and Acid Black 10 BX reached as high as 95.4, 92.3, and 89.1%, respectively. The immobilized CPO exhibited much better thermostability and resistance to pH inactivation than free CPO. The storage stability and reusability were greatly improved through the immobilization. It was found from the decolorization of Acid Blue 113 that 83.6% of initial activity retained after incubation at 4 °C for 60 days and that 80.9% of decolorization efficiency retained after 12 cycles of reuses.


Assuntos
Compostos Azo/química , Cloreto Peroxidase/química , Enzimas Imobilizadas/química , Nanocompostos/química , Dióxido de Silício/química , Óxido de Zinco/química
7.
ACS Appl Mater Interfaces ; 9(36): 30608-30616, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28841286

RESUMO

VNb9O25 is a novel lithium storage material, which has not been systematically investigated so far. Via electrospinning technology, VNb9O25 samples with two different morphologies, pored nanoribbon and rodlike nanoparticles, are prepared in relatively low temperature and time-saving calcination conditions. It is found that the formation process of different morphologies depends on the control of self-aggregation of the precursor by using different sample collectors. Compared with rodlike VNb9O25 (RL-VNb9O25), pored nanoribbon VNb9O25 (PR-VNb9O25) can deliver a higher specific capacity, lower capacity loss, and better cyclability. Even cycled at 1000 mA g-1, the reversible capacity of 132.3 mAh g-1 is maintained by PR-VNb9O25 after 500 cycles, whereas RL-VNb9O25 only exhibits a capacity of 102.7 mAh g-1. The enhancement should be attributed to the pored nanoribbon structure with large specific surface area and shorter pathway for lithium ions transport. Furthermore, the lithium ions insertion/extraction process is verified from refinement results of in situ X-ray diffraction data, which is associated with a lithium occupation process in type III and VI cavities through tunnels I, II, and III. In addition, high structural stability and electrochemical reversibility are also demonstrated. All of these advantages suggest that PR-VNb9O25 is a promising anode material for lithium-ion batteries.

8.
Int J Biol Macromol ; 95: 1049-1055, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27984149

RESUMO

A ZnO nanowires/macroporous SiO2 composite was used as support to immobilize horseradish peroxidase (HRP) by in-situ cross-linking method. Using diethylene glycol diglycidyl ether (DDE) as a long-chained cross-linker, it was adsorbed on the surface of ZnO nanowires before reaction with HRPs, the resulted composite was quite different from the traditional cross-linking enzyme aggregates (CLEAs) on both structure and catalytic performance. The immobilized HRP showed high activity in the decolorization of azo dyes. The effect of various conditions such as the loading amount of HRP, solution pH, temperature, contact time and concentration of dye were optimized on the decolorization. The decolorization percentage of Acid Blue 113 and Acid black 10 BX reached as high as 95.4% and 90.3%, respectively. The immobilized HRP gave the highest decolorization rate under dye concentration as 50mg/L and reaction time of 35min. The immobilized HRP exhibited much better resistance to temperature and pH inactivation than free HRP. The storage stability and reusability were greatly improved through the immobilization, from the decolorization of Acid blue 113 it was found that 80.4% of initial efficiency retained after incubation at 4°C for 60 days, and that 79.4% of decolorization efficiency retained after 12 cycles reuse.


Assuntos
Compostos Azo/química , Corantes/química , Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Nanofios/química , Poluentes Químicos da Água/química , Adsorção , Biodegradação Ambiental , Reagentes de Ligações Cruzadas/química , Resinas Epóxi/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Nanocompostos/química , Dióxido de Silício/química , Temperatura , Águas Residuárias/química , Óxido de Zinco/química
9.
J Sep Sci ; 38(5): 871-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25556922

RESUMO

A novel and effective magnetic multiwalled carbon nanotube composite for the separation and enrichment of polychlorinated biphenyls was developed. Fe3 O4 @SiO2 core-shell structured nanoparticles were first synthesized, then the poly(sodium 4-styrenesulfonate) was laid on its surface to prepare the polyanionic magnetic nanoparticles. The above materials were then grafted with polycationic multiwalled carbon nanotubes, which were modified by polydiallyl dimethyl ammonium chloride through the layer-by-layer self-assembly approach. Its performance was tested by magnetic solid-phase extraction and gas chromatography with mass spectrometry for the determination of six kinds of indicator polychlorinated biphenyls in water samples. Under optimal conditions, the spiked recoveries of several real samples for six kinds of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, PCB180) were in the range of 73.4-99.5% with relative standard deviations varying from 1.5 to 8.4%. All target compounds showed good linearities in the tested range with correlation coefficients higher than 0.9993. The limits of quantification for six kinds of indicator polychlorinated biphenyls were between 0.018 and 0.039 ng/mL. The proposed method was successfully applied to analyze polychlorinated biphenyls in real water samples. Satisfactory results were obtained using the effective magnetic absorbent.

10.
J Chromatogr A ; 1365: 35-44, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25218632

RESUMO

A high-performance magnetic molecularly imprinted polymer (MIP) coating using zeolite imidazolate framework-8 coated magnetic iron oxide (Fe3O4@ZIF-8) as a carrier was developed for simultaneous automated solid phase microextraction of four estrogens in 24 food samples. The coating material, abbreviated as MZMIP, was synthesized through time-efficient layer-by-layer assembling of ZIF-8 and MIP film on Fe3O4 particles. It was characterized and automatically coated on the surface of SPME fibers by electromagnetic bonding. The extraction performance, reusability, repeatability, and validity of the MZMIP-SPME system was evaluated for high-throughput analysis of estrone (E1), estradiol (E2), estriol (E3), and ethinylestradiol (EE2). Various factors affecting the quality of MZMIP coating were optimized. Compared with traditional magnetic MIP coating based on Fe3O4@SiO2 carrier, the MZMIP coating exhibited high extraction capacity and quick adsorption and desorption kinetics to E1, E2, E3, and EE2 owing to the larger amount of imprinting sites in MZMIP. Under optimum conditions, the proposed system requires only 25min for pretreatment of all 24 samples (62.5s per sample). The limits of detection and quantitation of the proposed automated system for analysis were found to range from 0.4 to 1.7 and 1.1 to 6.2ngg(-1), respectively. During analysis of spiked fish and pork, the new coating showed better recovery and selectivity compared with Fe3O4@SiO2@MIP (MMIP) and commercially available SPME. The results indicated that the MZMIP coating could be effectively employed for pretreatment of ultra-trace level of estrogens in food.


Assuntos
Estrogênios/isolamento & purificação , Compostos Férricos/química , Produtos Pesqueiros/análise , Imidazóis/química , Carne/análise , Polímeros/química , Microextração em Fase Sólida/métodos , Adsorção , Animais , Estradiol/isolamento & purificação , Estriol/isolamento & purificação , Estrona/isolamento & purificação , Peixes , Imãs , Impressão Molecular , Porosidade , Suínos , Zeolitas
11.
J Chromatogr A ; 1331: 10-8, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24485038

RESUMO

A new automated solid-phase micro extraction (SPME) sampling method was developed for quantitative enrichment of estrogens (ES) from milk powder, using magnetic molecularly imprinted polymer (MMIP) as fiber coating. The method (MMIP-SPME) was built with several electromagnetic stainless steel fibers, placed in parallel for simultaneously extraction. The MMIP was synthesized using core-shell Fe3O4@SiO2 nanoparticles (NPs) as magnetic support. Estradiol (E2) was employed as the template molecule, acrylamide (AA) as functional monomer, and ethylene glycol dimethacrylate (EGDMA) as cross-linker. MMIP can be easily absorbed or desorbed from fibers when the current is turned on or off, creating magnetism. Compared to traditional MIP-SPME, the prepared procedure of MMIP-SPME is time-saving and organic solvent-free. The proposed device significantly improved the efficiency of separation and enrichment of estrogens from complex matrices thereby and facilitating the pretreatment steps by electromagnetically controlled extraction fibers to achieve full automation. Several experimental parameters were studied, including extraction and desorption kinetics, solution pH, desorption solution, ratio, and shuttle rate. The newly developed MMIP-SPME showed good sensitivity and high binding capacity, fast adsorption kinetics and desorption kinetics for estrone (E1), estradiol (E2), estriol (E3) and diethylstilbestrol (DES) under optimized conditions. The detection limits for the four estrogens were 1.5-5.5ngg(-1) with excellent reproducibility (RSD values less than 7.1%) when milk powder samples spiked with analytes at 20, 100 and 250ngg(-1) were studied.


Assuntos
Resinas Acrílicas/química , Estrogênios/análise , Leite/química , Microextração em Fase Sólida/métodos , Adsorção , Animais , Reagentes de Ligações Cruzadas/química , Dietilestilbestrol/análise , Estradiol/análise , Estriol/análise , Estrona/análise , Metacrilatos/química , Impressão Molecular , Pós , Reprodutibilidade dos Testes , Microextração em Fase Sólida/instrumentação
12.
Materials (Basel) ; 7(8): 6028-6044, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28788175

RESUMO

The purpose of the study was to develop a facile method for the fabrication of a stable and reusable magnetic graphene composite absorbent to remove trace levels of polybrominated diphenyl ethers in water treatment. The poly cationic Fe3O4@PDDA (poly(diallyldimethyl ammonium chloride) (PDDA)) core-shell structured nanoparticles were first synthesized, and then, DNA was laid on the surface of graphene oxide (GOx) to prepare the polyanionic GOx@DNA composite. The above materials were then mixed together and adhered together through sol-gel technology. Thus, the Fe3O4@PDDA/GOx@DNA composite absorbent was prepared. Its performance was tested by disperse solid phase extraction and gas chromatography/mass spectrometric (GC/MS) for removing six kinds of indicative polybrominated diphenyl ethers (BDEs) in water samples. The removal percentages of several real samples for six kinds of BDEs (BDE17, BDE28, BDE 71, BDE 47, BDE 66, BDE 100) at the ng/mL order of magnitude were in the range of 88.2%-99.1%. The removal percentage still reached 80.0% when the adsorbent was reused at least 20 times. The results suggested that the magnetic absorbent can obviously remove trace levels of BDEs from large volumes of aqueous solutions in environmental pollution cleanup with high removal efficiency.

13.
ACS Appl Mater Interfaces ; 5(17): 8615-27, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23927499

RESUMO

In this paper, we reported on a comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries. Combined with powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, galvanostatic discharge/charge tests and in situ X-ray diffraction technologies, we explore and compare the insertion/extraction mechanisms of LiVPO4F based on the V3+/V2+/V+ redox couples and Li4Ti5O12 based on the Ti4+/Ti3+ redox couple cycled in 1.0-3.0 V and 0.0-3.0 V. The electrochemical results indicate that both LiVPO4F and Li4Ti5O12 are solid electrolyte interphase free materials in 1.0-3.0 V. The insertion/extraction mechanisms of LiVPO4F and Li4Ti5O12 are similar with each other in 1.0-3.0 V as proved by in situ X-ray diffraction. It also demonstrates that both samples possess stable structure in 0.0-3.0 V. Additionally, the electrochemical performance tests of LiVPO4F and Li4Ti5O12 indicate that both samples cycled in 0.0-3.0 V exhibit much higher capacities than those cycled in 1.0-3.0 V but display worse cycle performance. The rate performance of Li4Ti5O12 far exceeds that of LiVPO4F in the same electrochemical potential window. In particular, the capacity retention of Li4Ti5O12 cycled in 1.0-3.0 V is as high as 98.2% after 20 cycles. By contrast, Li4Ti5O12 is expected to be a candidate anode material considering its high working potential, structural zero-strain property, and excellent cycle stability and rate performance.


Assuntos
Fontes de Energia Elétrica , Compostos de Lítio/química , Lítio/química , Titânio/química , Compostos de Vanádio/química , Técnicas Eletroquímicas , Eletrodos , Eletrólitos/química , Íons/química , Microscopia Eletrônica de Varredura , Oxirredução , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...