Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 23(19): 5109-22, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24838286

RESUMO

The accumulation of serpin oligomers and polymers within the endoplasmic reticulum (ER) causes cellular injury in patients with the classical form α1-antitrypsin deficiency (ATD). To better understand the cellular and molecular genetic aspects of this disorder, we generated transgenic C. elegans strains expressing either the wild-type (ATM) or Z mutant form (ATZ) of the human serpin fused to GFP. Animals secreted ATM, but retained polymerized ATZ within dilated ER cisternae. These latter animals also showed slow growth, smaller brood sizes and decreased longevity; phenotypes observed in ATD patients or transgenic mouse lines expressing ATZ. Similar to mammalian models, ATZ was disposed of by autophagy and ER-associated degradation pathways. Mutant strains defective in insulin signaling (daf-2) also showed a marked decrease in ATZ accumulation. Enhanced ATZ turnover was associated with the activity of two proteins central to systemic/exogenous (exo)-RNAi pathway: the dsRNA importer, SID-1 and the argonaute, RDE-1. Animals with enhanced exo-RNAi activity (rrf-3 mutant) phenocopied the insulin signaling mutants and also showed increased ATZ turnover. Taken together, these studies allude to the existence of a novel proteostasis pathway that mechanistically links misfolded protein turnover to components of the systemic RNAi machinery.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Interferência de RNA , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Degradação Associada com o Retículo Endoplasmático , Expressão Gênica , Genes Reporter , Humanos , Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fenótipo , Regiões Promotoras Genéticas , Proteólise , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serpinas , Transdução de Sinais , Trocadores de Sódio-Hidrogênio/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo
2.
Hum Mol Genet ; 23(19): 5123-32, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24838285

RESUMO

α1-Antitrypsin deficiency (ATD) is a common genetic disorder that can lead to end-stage liver and lung disease. Although liver transplantation remains the only therapy currently available, manipulation of the proteostasis network (PN) by small molecule therapeutics offers great promise. To accelerate the drug-discovery process for this disease, we first developed a semi-automated high-throughput/content-genome-wide RNAi screen to identify PN modifiers affecting the accumulation of the α1-antitrypsin Z mutant (ATZ) in a Caenorhabditis elegans model of ATD. We identified 104 PN modifiers, and these genes were used in a computational strategy to identify human ortholog-ligand pairs. Based on rigorous selection criteria, we identified four FDA-approved drugs directed against four different PN targets that decreased the accumulation of ATZ in C. elegans. We also tested one of the compounds in a mammalian cell line with similar results. This methodology also proved useful in confirming drug targets in vivo, and predicting the success of combination therapy. We propose that small animal models of genetic disorders combined with genome-wide RNAi screening and computational methods can be used to rapidly, economically and strategically prime the preclinical discovery pipeline for rare and neglected diseases with limited therapeutic options.


Assuntos
Descoberta de Drogas , Estudo de Associação Genômica Ampla , Interferência de RNA , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Animais , Caenorhabditis elegans , Biologia Computacional , Modelos Animais de Doenças , Genômica , Ensaios de Triagem em Larga Escala , Humanos , Mutação , Ligação Proteica , Deficiências na Proteostase/genética , Reprodutibilidade dos Testes , Deficiência de alfa 1-Antitripsina/tratamento farmacológico
3.
PLoS One ; 7(7): e40145, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768338

RESUMO

Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Catepsina A/metabolismo , Catepsina L/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/enzimologia , Mutação de Sentido Incorreto , Dobramento de Proteína , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Catepsina A/genética , Catepsina L/genética , Linhagem Celular , Retículo Endoplasmático/genética
4.
Methods Enzymol ; 499: 259-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21683258

RESUMO

Protein misfolding, polymerization, and/or aggregation are hallmarks of serpinopathies and many other human genetic disorders including Alzheimer's, Huntington's, and Parkinson's disease. While higher organism models have helped shape our understanding of these diseases, simpler model systems, like Caenorhabditis elegans, offer great versatility for elucidating complex genetic mechanisms underlying these diseases. Moreover, recent advances in automated high-throughput methodologies have promoted C. elegans as a useful tool for drug discovery. In this chapter, we describe how one could model serpinopathies in C. elegans and how one could exploit this model to identify small molecule compounds that can be developed into effective therapeutic drugs.


Assuntos
Serpinas/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Serpinas/genética
5.
PLoS One ; 5(11): e15460, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21103396

RESUMO

The development of preclinical models amenable to live animal bioactive compound screening is an attractive approach to discovering effective pharmacological therapies for disorders caused by misfolded and aggregation-prone proteins. In general, however, live animal drug screening is labor and resource intensive, and has been hampered by the lack of robust assay designs and high throughput work-flows. Based on their small size, tissue transparency and ease of cultivation, the use of C. elegans should obviate many of the technical impediments associated with live animal drug screening. Moreover, their genetic tractability and accomplished record for providing insights into the molecular and cellular basis of human disease, should make C. elegans an ideal model system for in vivo drug discovery campaigns. The goal of this study was to determine whether C. elegans could be adapted to high-throughput and high-content drug screening strategies analogous to those developed for cell-based systems. Using transgenic animals expressing fluorescently-tagged proteins, we first developed a high-quality, high-throughput work-flow utilizing an automated fluorescence microscopy platform with integrated image acquisition and data analysis modules to qualitatively assess different biological processes including, growth, tissue development, cell viability and autophagy. We next adapted this technology to conduct a small molecule screen and identified compounds that altered the intracellular accumulation of the human aggregation prone mutant that causes liver disease in α1-antitrypsin deficiency. This study provides powerful validation for advancement in preclinical drug discovery campaigns by screening live C. elegans modeling α1-antitrypsin deficiency and other complex disease phenotypes on high-content imaging platforms.


Assuntos
Caenorhabditis elegans/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Microscopia de Fluorescência/métodos , alfa 1-Antitripsina/metabolismo , Animais , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Cantaridina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Inibidores Enzimáticos/farmacologia , Flufenazina/farmacologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Animais , Pimozida/farmacologia , Azida Sódica/farmacologia , alfa 1-Antitripsina/genética
6.
Pediatr Res ; 65(1): 10-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18852689

RESUMO

As an experimental system, Caenorhabditis elegans offers a unique opportunity to interrogate in vivo the genetic and molecular functions of human disease-related genes. For example, C. elegans has provided crucial insights into fundamental biologic processes, such as cell death and cell fate determinations, as well as pathologic processes such as neurodegeneration and microbial susceptibility. The C. elegans model has several distinct advantages, including a completely sequenced genome that shares extensive homology with that of mammals, ease of cultivation and storage, a relatively short lifespan and techniques for generating null and transgenic animals. However, the ability to conduct unbiased forward and reverse genetic screens in C. elegans remains one of the most powerful experimental paradigms for discovering the biochemical pathways underlying human disease phenotypes. The identification of these pathways leads to a better understanding of the molecular interactions that perturb cellular physiology, and forms the foundation for designing mechanism-based therapies. To this end, the ability to process large numbers of isogenic animals through automated work stations suggests that C. elegans, manifesting different aspects of human disease phenotypes, will become the platform of choice for in vivo drug discovery and target validation using high-throughput/content screening technologies.


Assuntos
Caenorhabditis elegans/genética , DNA de Helmintos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Modelos Animais , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sequência de Bases , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Sequência Conservada , Bases de Dados Genéticas , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Mutação , Necrose , Doenças Parasitárias/genética , Fenótipo , Reprodutibilidade dos Testes , Especificidade da Espécie
7.
Cell ; 130(6): 1108-19, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17889653

RESUMO

Extracellular serpins such as antithrombin and alpha1-antitrypsin are the quintessential regulators of proteolytic pathways. In contrast, the biological functions of the intracellular serpins remain obscure. We now report that the C. elegans intracellular serpin, SRP-6, exhibits a prosurvival function by blocking necrosis. Minutes after hypotonic shock, srp-6 null animals underwent a catastrophic series of events culminating in lysosomal disruption, cytoplasmic proteolysis, and death. This newly defined hypo-osmotic stress lethal (Osl) phenotype was dependent upon calpains and lysosomal cysteine peptidases, two in vitro targets of SRP-6. By protecting against both the induction of and the lethal effects from lysosomal injury, SRP-6 also blocked death induced by heat shock, oxidative stress, hypoxia, and cation channel hyperactivity. These findings suggest that multiple noxious stimuli converge upon a peptidase-driven, core stress response pathway that, in the absence of serpin regulation, triggers a lysosomal-dependent necrotic cell death routine.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Serpinas/metabolismo , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Hipóxia Celular , Tamanho Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Genótipo , Temperatura Alta , Lisossomos/enzimologia , Lisossomos/ultraestrutura , Mutação , Necrose , Pressão Osmótica , Estresse Oxidativo , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Serpinas/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...