Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Case Rep ; 17(1): 544, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098127

RESUMO

INTRODUCTION: Pseudobulbar affect, or emotional dysregulation, commonly occurs following stroke. However, it is frequently missed in cases involving the cerebellum, resulting in a lack of treatment, which can directly impact stroke rehabilitation. CASE PRESENTATION: A 63-year-old Caucasian female with no history of mood disorders presented with gait instability, dysarthria, and right sided hemiplegia, secondary to cerebellar and pontine ischemic stroke from a basilar occlusion. She underwent endovascular therapy and her deficits gradually improved. However during recovery she began to develop uncontrollable tearfulness while retaining insight that her emotional expression was contextually inappropriate. She was treated with a selective serotonin reuptake inhibitor with reported improvements in her emotional regulation at one year follow up. CONCLUSION: This case highlights cerebellar injury as a potential cause of poorly regulated emotions, or an emotional dysmetria. The recognition of this disorder in patients with cerebellar or pontine strokes is critical, as untreated pseudobulbar affect can impact future stroke rehabilitation.


Assuntos
Ataxia Cerebelar , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Ataxia Cerebelar/complicações , Acidente Vascular Cerebral/complicações , Ponte/diagnóstico por imagem , Emoções , Cerebelo/diagnóstico por imagem
2.
J Neurosci ; 43(49): 8348-8366, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37821230

RESUMO

The clustered protocadherins (cPcdhs) play a critical role in the patterning of several CNS axon and dendritic arbors, through regulation of homophilic self and neighboring interactions. While not explored, primary peripheral sensory afferents that innervate the epidermis may require similar constraints to convey spatial signals with appropriate fidelity. Here, we show that members of the γ-Pcdh (Pcdhγ) family are expressed in both adult sensory neuron axons and in neighboring keratinocytes that have close interactions during skin reinnervation. Adult mice of both sexes were studied. Pcdhγ knock-down either through small interfering RNA (siRNA) transduction or AAV-Cre recombinase transfection of adult mouse primary sensory neurons from floxed Pcdhγ mice was associated with a remarkable rise in neurite outgrowth and branching. Rises in outgrowth were abrogated by Rac1 inhibition. Moreover, AAV-Cre knock-down in Pcdhγ floxed neurons generated a rise in neurite self-intersections, and a robust rise in neighbor intersections or tiling, suggesting a role in sensory axon repulsion. Interestingly, preconditioned (3-d axotomy) neurons with enhanced growth had temporary declines in Pcdhγ and lessened outgrowth from Pcdhγ siRNA. In vivo, mice with local hindpaw skin Pcdhγ knock-down by siRNA had accelerated reinnervation by new epidermal axons with greater terminal branching and reduced intra-axonal spacing. Pcdhγ knock-down also had reciprocal impacts on keratinocyte density and nuclear size. Taken together, this work provides evidence for a role of Pcdhγ in attenuating outgrowth of sensory axons and their interactions, with implications in how new reinnervating axons following injury fare amid skin keratinocytes that also express Pcdhγ.SIGNIFICANCE STATEMENT The molecular mechanisms and potential constraints that govern skin reinnervation and patterning by sensory axons are largely unexplored. Here, we show that γ-protocadherins (Pcdhγ) may help to dictate interaction not only among axons but also between axons and keratinocytes as the former re-enter the skin during reinnervation. Pcdhγ neuronal knock-down enhances outgrowth in peripheral sensory neurons, involving the growth cone protein Rac1 whereas skin Pcdhγ knock-down generates rises in terminal epidermal axon growth and branching during re-innervation. Manipulation of sensory axon regrowth within the epidermis offers an opportunity to influence regenerative outcomes following nerve injury.


Assuntos
Regeneração Nervosa , Protocaderinas , Células Receptoras Sensoriais , Animais , Feminino , Masculino , Camundongos , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Protocaderinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Receptoras Sensoriais/metabolismo
3.
J Neurophysiol ; 120(1): 250-262, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589816

RESUMO

The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).


Assuntos
Potenciais de Ação , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/fisiologia , Animais , Columbidae , Feminino , Masculino , Proteínas do Tecido Nervoso/genética , Fluxo Óptico , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...