Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 19547-19554, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976802

RESUMO

We simulated hot-electron relaxation in black phosphorus using the nonadiabatic molecular dynamics (NA-MD) approach with a non-Condon effect in momentum space beyond the harmonic approximation. By comparing simulations at the Γ point in a large supercell with those using a few k-points in a smaller supercell─while maintaining the same number of electronic states within the same energy range, we demonstrate that both setups yield remarkably consistent energy relaxation times, regardless of the initial state energy. This consistency arises from the complementary effects of supercell size in real space and the number of k-points in the reciprocal space. This finding confirms that simulations at a single k-point in large size supercells are an effective approximation for NA-MD with a non-Condon effect. This approach offers significant advantages for complex photophysics, such as intervalley scattering and indirect bandgap charge recombination, and is particularly suitable for large systems without the need for a harmonic approximation.

2.
Nano Lett ; 24(29): 8940-8947, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38989866

RESUMO

Two-dimensional magnet CrI3 is a promising candidate for spintronic devices. Using nonadiabatic molecular dynamics and noncollinear spin time-dependent density functional theory, we investigated hole spin relaxation in two-dimensional CrI3 and its dependence on magnetic configurations, impacted by spin-orbit and electron-phonon interactions. Driven by in-plane and out-of-plane iodine motions, the relaxation rates vary, extending from over half a picosecond in ferromagnetic systems to tens of femtoseconds in certain antiferromagnetic states due to significant spin fluctuations, associated with the nonadiabatic spin-flip in tuning to the adiabatic flip. Antiferromagnetic CrI3 with staggered layer magnetic order notably accelerates adiabatic spin-flip due to enhanced state degeneracy and additional phonon modes. Ferrimagnetic CrI3 shows a transitional behavior between ferromagnetic and antiferromagnetic types as the magnetic moment changes. These insights into the spin dynamics of CrI3 underscore its potential for rapid-response spintronic applications and advance our understanding of two-dimensional materials for spintronics.

3.
J Phys Chem Lett ; 15(23): 6002-6009, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38814291

RESUMO

We combined ring-polymer molecular dynamics (MD) and ab initio MD with nonadiabatic MD to study the effects of nuclear quantum effects (NQEs) on interlayer electron transfer and electron-hole recombination at the g-C3N4/TiO2 interface. Our simulations indicate that NQEs significantly affect electron transfer and electron-hole recombination dynamics, accelerating both processes. NQEs deform the g-C3N4 layer and expedite the movement of carbon and nitrogen atoms, thus, enhancing charge delocalization and interlayer coupling. This improved overlap between electronic state wave functions enhances nonadiabatic couplings, facilitating electron transfer and recombination. In addition to the enhanced nonadiabatic couplings accelerating electron transfer, the presence of NQEs narrows the energy gap and delays decoherence by mitigating overall fluctuations, because of restricted TiO2 movements overwhelming enhanced g-C3N4 fluctuations, thereby making the recombination faster. This work provides valuable insights into NQEs in light-element systems and contributes to guiding the development of highly efficient photocatalysts.

4.
J Am Chem Soc ; 146(23): 16314-16323, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38812460

RESUMO

Two-dimensional (2D) metal halide perovskites, such as BA2SnI4 (BA═CH3(CH2)3NH3), exhibit an enhanced charge carrier lifetime in experiments under strain. Experiments suggest that significant compression of the BA molecule, rather than of the inorganic lattice, contributes to this enhancement. To elucidate the underlying physical mechanism, we apply a moderate compressive strain to the entire system and subsequently introduce significant compression to the BA molecules. We then perform ab initio nonadiabatic molecular dynamics simulations of nonradiative electron-hole recombination. We observe that the overall lattice compression reduces atomic motions and decreases nonadiabatic coupling, thereby delaying electron-hole recombination. Additionally, compression of the BA molecules enhances hydrogen bonding between the BA molecules and iodine atoms, which lengthens the Sn-I bonds, distorts the [SnI6]4- octahedra, and suppresses atomic motions further, thus reducing nonadiabatic coupling. Also, the elongated Sn-I bonds and weakened antibonding interactions increase the band gap. Altogether, the compression delays the nonradiative electron-hole recombination by more than a factor of 3. Our simulations provide new and valuable physical insights into how compressive strain, accommodated primarily by the organic ligands, positively influences the optoelectronic properties of 2D layered halide perovskites, offering a promising pathway for further performance improvements.

5.
J Phys Chem Lett ; 15(10): 2867-2875, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38446846

RESUMO

The rapid recombination of photogenerated carriers heavily restricts the photocatalytic efficiency. Here, we propose a new strategy to improve catalytic efficiency based on the ferroelectric van der Waals heterostructure (CuBiP2Se6/C2N). Combining density functional theory and the nonadiabatic molecular dynamics (NAMD) method, we have systematically analyzed the ground-state properties and carrier dynamics images in the CuBiP2Se6/C2N heterostructure. Our calculations showed that the ferroelectric polarization of CuBiP2Se6 provides the internal driving force for the photogenerated carriers separation. NAMD results demonstrate that the excited-state carrier transfer and recombination processes in the CuBiP2Se6/C2N are consistent with a type II mechanism. Meanwhile, constructing the ferroelectric heterostructure can effectively prolong the carrier lifetime, from ∼65.98 to ∼124.54 ps. Moreover, the high quantum efficiency and tunable band edge positions mean that the CuBiP2Se6/C2N heterostructure is an excellent potential candidate material for photocatalytic water splitting.

6.
Nano Lett ; 24(11): 3476-3483, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445608

RESUMO

Experiments have demonstrated that mild humidity can enhance the stability of the CsPbBr3 perovskite, though the underlying mechanism remains unclear. Utilizing ab initio molecular dynamics, ring polymer molecular dynamics, and non-adiabatic molecular dynamics, our study reveals that nuclear quantum effects (NQEs) play a crucial role in stabilizing the lattice rigidity of the perovskite while simultaneously shortening the charge carrier lifetime. NQEs reduce the extent of geometric disorder and the number of atomic fluctuations, diminish the extent of hole localization, and thereby improve the electron-hole overlap and non-adiabatic coupling. Concurrently, these effects significantly suppress phonon modes and slow decoherence. As a result, these factors collectively accelerate charge recombination by a factor of 1.42 compared to that in scenarios excluding NQEs. The resulting sub-10 ns recombination time scales align remarkably well with experimental findings. This research offers novel insight into how moisture resistance impacts the stability and charge carrier lifetime in all-inorganic perovskites.

7.
J Phys Chem Lett ; 15(14): 3764-3771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552186

RESUMO

In this study, we developed a machine-learned force field for CsPbI3 using a neural network potential, enabling molecular dynamics simulations (MD) with ab initio accuracy over nanoseconds. This approach, combined with ab initio MD and nonadiabatic MD, was used to study the charge trapping and recombination dynamics in both pristine and defective CsPbI3. Our simulations revealed key transitions affecting carrier lifetimes, especially in systems with iodine vacancy and interstitial iodine defects. An iodine trimer, formed when iodine replaces cesium, exhibits a high-frequency phonon mode. This mode enhances nonadiabatic coupling, accelerating charge recombination in defective systems compared to pristine ones. In the iodine vacancy system, recombination times varied significantly due to differences in NA coupling and energy gaps. The interplay between nonadiabatic coupling and pure dephasing time is crucial in determining recombination times for interstitial iodine defects. Our findings highlight the role of defect evolution in perovskites, offering insights for enhancing perovskite performance.

8.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506296

RESUMO

Using ab initio nonadiabatic molecular dynamics, we study the effect of large A-site cations on nonradiative electron-hole recombination in two-dimensional Ruddlesden-Popper perovskites HA2APb2I7, HA = n-hexylammonium, A = methylammonium (MA), or guanidinium (GA). The steric hindrance created by large GA cations distorts and stiffens the inorganic Pb-I lattice, reduces thermal structural fluctuations, and maintains the delocalization of electrons and holes at ambient and elevated temperatures. The delocalized charges interact more strongly in the GA system than in the MA system, and the charge recombination is accelerated. In contrast, replacement of only some MA cations with GA enhances disorder and increases charge lifetime, as seen in three-dimensional perovskites. This study highlights the key influence of structural fluctuations and disorder on the properties of charge carriers in metal halide perovskites, providing guidance for tuning materials' optoelectronic performance.

9.
J Phys Chem Lett ; 15(6): 1546-1552, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38299495

RESUMO

Humidity has exhibited experimentally either beneficial or detrimental effects on the charge carrier lifetime of CH3NH3PbI3 perovskites, leaving the mechanism unresolved. By using ab initio nonadiabatic molecular dynamics simulations, we unveil the dual role of humidity stemming from the complex interplay between water and defects. Beneficially, water passivates iodine vacancies (VI) or grain boundaries (GBs), mitigating electron trapping by reducing nonadiabatic coupling and delaying charge recombination. However, when VI and GBs coexist, water molecules make the two unsaturated lead atoms approach closer and exacerbate electron trapping by deepening the Pb-dimer electron trap that was created by the VI defect, shortening the carrier lifetime to half of pristine CH3NH3PbI3. The study uncovers the origin of the positive and negative effects of humidity on the charge carrier lifetime of perovskites and offers strategies for improving perovskite devices, particularly by avoiding simultaneous point defects and GBs.

10.
Small ; 20(29): e2311289, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349036

RESUMO

Hydrogen evolution reaction (HER) in neutral or alkaline electrolytes is appealing for sustainable hydrogen production driven by water splitting, but generally suffers from unsatisfied catalytic activities at high current densities owing to extra kinetic energy barriers required to generate protons through water dissociation. In response, here, a competitive Ni3N/Co3N/CoP electrocatalyst with multifunctional interfacial sites and multilevel interfaces, in which Ni3N/CoP performs as active sites to boost initial water dissociation and Co3N/CoP accelerates subsequent hydrogen adsorption process as confirmed by density functional theory calculations and in situ X-ray photoelectron spectroscopy analysis, is reported. This hybrid catalyst possesses extraordinary HER activity in base, featured by extremely low overpotentials of 115 and 142 mV to afford 500 and 1000 mA cm-2, respectively, outperforming most ever-reported metal phosphides-based catalysts. This catalyst presents an ultrahigh current density of 3545 mA cm-2 by a factor of 4.96 relative to noble Pt/C catalysts (715 mA cm-2) at 0.2 V. Assembled with Fe(PO3)2/Ni2P anode, industrial-level current densities of 500/1000 mA cm-2 at ultralow cell voltages of 1.62/1.66 V for overall water electrolysis with outstanding long-term stability are actualized. More interestingly, this hybrid catalyst also performs well in acidic, neutral freshwater, and seawater requiring relatively low overpotentials of 140, 290, and 331 mV to reach 500 mA cm-2. Particularly, this catalyst can withstand electrochemical corrosion without obvious activity decay at the industrial-level current densities for over 100 h in base. This work provides a cornerstone for the construction of advanced catalysts operated in different pH environments.

11.
Zhen Ci Yan Jiu ; 49(1): 23-29, 2024 Jan 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38239135

RESUMO

OBJECTIVES: To observe the effect of catgut embedding at "Feishu"(BL13), "Dingchuan" (EX-B1) and "Danzhong" (CV17) on expression of phosphorylated p38 mitogen activated protein kinase (p-p38 MAPK), interleukin-4 (IL-4), interferon-γ (IFN-γ) and changes of airway epithelial cells (AEC) in the lung tissue of bronchial asthma (BA) rats, so as to explore its mechanisms underlying improvement of BA. METHODS: Forty male Wistar rats were randomly and equally divided into blank control, model, dexamethasone (DEX) and catgut embedding groups. The BA model was established by intraperitoneal injection of suspension of ovalbumin and aluminum hydroxide. Rats of the DEX group received intraperitoneal injection of DEX (1.5 mg/kg), once daily for 2 weeks, and those of the catgut embedding group received catgut embedding at BL13, EX-B1 and CV17 only one time. The rats' sneezing times per miniute in each group were recorded. H.E. staining was used to observe the histopathological changes of the lung tissue under light microscope. A transmission electron microscope (TEM) was used to observe the ultrastructural changes of AEC in the lung tissue, including the thickness of bronchial wall and bronchial smooth muscle by using an image analysis software. The protein expressions of p-p38 MAPK, IL-4 and INF-γ in the lung tissue were determined using Western blot. RESULTS: Morphological observation revealed that in the model group, light microscope showed deformed and swollen bronchial tube wall with increased folds and thickened bronchial smooth muscle;and TEM showed a large number of autophagy vesicles containing swollen and deformed organelles in the AEC, and apparent reduction of intracellular mitochondria, these situations were obviously milder in both DEX and catgut embedding groups. Compared with the blank control group, the sneezing times, thickness of bronchial wall and bronchial smooth muscle in the model group were significantly increased (P<0.01), and the expressions of p-p38 MAPK and IL-4 in lung tissue were significantly increased (P<0.01), while the expression of IFN-γ was significantly decreased (P<0.01) in the model group. In comparison with the model group, the sneezing times, thickness of bronchial wall and bronchial smooth muscle, protein expressions of p-p38 MAPK and IL-4 were significantly decreased (P<0.01), while the expression of IFN-γ was obviously increased (P<0.01) in both the DEX and catgut embedding groups. CONCLUSIONS: Acupoint catgut embedding can reduce the expression of IL-4 and increase the expression of IFN-γ by inhibiting p38 MAPK signal pathway of lung tissues in BA rats, which may contribute to its effect in alleviating the degree of airway epithelial cells damage.


Assuntos
Asma , Interleucina-4 , Ratos , Masculino , Animais , Ratos Wistar , Interleucina-4/genética , Categute , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Pontos de Acupuntura , Espirro , Pulmão , Asma/genética , Asma/terapia
12.
ACS Nano ; 18(3): 1931-1947, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38197410

RESUMO

The ultrafast carrier dynamics of junctions between two chemically identical, but electronically distinct, transition metal dichalcogenides (TMDs) remains largely unknown. Here, we employ time-resolved photoemission electron microscopy (TR-PEEM) to probe the ultrafast carrier dynamics of a monolayer-to-multilayer (1L-ML) WSe2 junction. The TR-PEEM signals recorded for the individual components of the junction reveal the sub-ps carrier cooling dynamics of 1L- and 7L-WSe2, as well as few-ps exciton-exciton annihilation occurring on 1L-WSe2. We observe ultrafast interfacial hole (h) transfer from 1L- to 7L-WSe2 on an ∼0.2 ps time scale. The resultant excess h density in 7L-WSe2 decays by carrier recombination across the junction interface on an ∼100 ps time scale. Reminiscent of the behavior at a depletion region, the TR-PEEM image reveals the h density accumulation on the 7L-WSe2 interface, with a decay length ∼0.60 ± 0.17 µm. These charge transfer and recombination dynamics are in agreement with ab initio quantum dynamics. The computed orbital densities reveal that charge transfer occurs from the basal plane, which extends over both 1L and ML regions, to the upper plane localized on the ML region. This mode of charge transfer is distinctive to chemically homogeneous junctions of layered materials and constitutes an additional carrier deactivation pathway that should be considered in studies of 1L-TMDs found alongside their ML, a common occurrence in exfoliated samples.

13.
J Phys Chem Lett ; 15(1): 1-8, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38126721

RESUMO

Zinc oxide (ZnO) is a wide bandgap prototypical n-type semiconductor due to the presence of intrinsic oxygen vacancies (VO). The VO can readily transfer to the most energetically favorable +2 charged VO (VO2+) by losing two electrons mediated by the metastable VO1+ defect. Nevertheless, the influence of charged VO on the charge dynamics in ZnO and the underlying mechanisms remain elusive. By performing nonadiabatic molecular dynamics simulations of the charge trapping and recombination processes, we show that both VO1+ and VO2+ slow down the nonradiative electron-hole recombination via assisted defect states and, thus, extending charge carrier lifetime compared to pristine ZnO. Our study contributes to identifying the different recombination pathways that take place in VO1+ and VO2+ of n-type ZnO systems, providing useful guidance for designing high-performance ZnO-based devices.

14.
J Am Chem Soc ; 146(1): 1167-1173, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38127733

RESUMO

Nonradiative multiphonon transitions play a crucial role in understanding charge carrier dynamics. To capture the non-Condon effect in nonadiabatic molecular dynamics (NA-MD), we develop a simple and accurate method to calculate noncrossing and crossing k-point NA coupling in momentum space on an equal footing and implement it with a trajectory surface hopping algorithm. Multiple k-point MD trajectories can provide sufficient nonzero momentum multiphonons coupled to electrons, and the momentum conservation is maintained during nonvertical electron transition. The simulations of indirect bandgap transition in silicon and intra- and intervalley transitions in graphene show that incorporation of the non-Condon effect is needed to correctly depict these types of charge dynamics. In particular, a hidden process is responsible for the delayed nonradiative electron-hole recombination in silicon: the thermal-assisted rapid trapping of an excited electron at the conduction band minimum by a long-lived higher energy state through a nonvertical transition extends charge carrier lifetime, approaching 1 ns, which is about 1.5 times slower than the direct bandgap recombination. For graphene, intervalley scattering takes place within about 225 fs, which can occur only when the intravalley relaxation proceeds to about 50 fs to gain enough phonon momentum. The intra- and intervalley scattering constitute energy relaxation, which completes within sub-500 fs. All the simulated time scales are in excellent agreement with experiments. The study establishes the underlying mechanisms for a long-lived charge carrier in silicon and valley scattering in graphene and underscores the robustness of the non-Condon approximation NA-MD method, which is suitable for rigid, soft, and large defective systems.

15.
J Phys Chem Lett ; 14(49): 10988-10998, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38039093

RESUMO

The polaron is a fundamental physical phenomenon in transition metal oxides (TMOs), and it has been studied extensively for decades. However, the implication of a polaron on photochemistry is still ambiguous. As such, understanding the fundamental properties and controlling the dynamics of polarons at the atomistic level is desired. In this Perspective, we seek to highlight the recent advances in studying small polarons in TMOs, with a particular focus on nonadiabatic molecular dynamics at the ab initio level, and discuss the implications for photocatalysis from the aspects of the structure, intrinsic physical properties, formation, migration, and recombination of small polarons. Finally, various methods were proposed to advance our understanding of manipulating the small-polaron dynamics, and strategies to design high-performance TMO-based photoelectrodes were discussed.

16.
J Am Chem Soc ; 145(47): 25887-25893, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966512

RESUMO

Ultrafast charge and spin dynamics have immense effects on the applications of topological insulators (TIs). By performing spin-adiabatic nonadiabatic molecular dynamics simulations in the presence of electron-phonon (e-ph) and spin-phonon couplings, we investigate temperature-dependent intra- and interband charge and spin relaxation dynamics via the bulk and surface paths in the three-dimensional TI Bi2Te3. The e-ph coupling dominates charge relaxation in the bulk path, and the relaxation rate is positively correlated with temperature due to the large energy gaps and weak spin polarization. Conversely, the relaxation dynamics exhibits an opposite temperature dependence in the surface path because of electron re-excitation and spin mismatching induced by spin-phonon coupling, which arises from small energy gaps and strong spin polarization. The two mechanisms rationalize the charge carriers being long-lived in the bulk and surface phases at low and room temperature, respectively. Additionally, strong thermal fluctuations of the topological states' magnetic moments destroy the spin-momentum locking and trigger backscattering at room temperature.

17.
J Phys Chem Lett ; 14(45): 10242-10248, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37937588

RESUMO

A recent experimental approach introduces sp3 defects into single-walled carbon nanotubes (SWNTs) through controlled functionalization with guanine, resulting in a decrease in charge carrier lifetime. However, the physical mechanism behind this phenomenon remains unclear. We employ nonadiabatic molecular dynamics to systematically model the nonradiative recombination process of electron-hole pairs in SWNTs with sp3 defects generated by a guanine molecule. We demonstrate that the introduction of sp3 defects creates an overlapping channel between the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO), significantly enhancing the nonadiabatic (NA) coupling and leading to a 4.7-fold acceleration in charge carrier recombination compared to defect-free SWNTs. The charge carrier recombination slows significantly at a lower temperature (50 K) due to the weakening of the NA coupling. Our results rationalize the accelerated recombination of charge carriers in SWNTs with sp3 defects in experiments and contribute to a deeper understanding of the carrier dynamics in SWNTs.

18.
J Phys Chem Lett ; 14(49): 10920-10929, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033191

RESUMO

Understanding and controlling carrier dynamics in two-dimensional (2D) van der Waals heterostructures through strain are crucial for their flexible applications. Here, femtosecond transient absorption spectroscopy is employed to elucidate the interlayer electron transfer and relaxation dynamics under external tensile strains in a WSe2/MoS2 heterostructure. The results show that a modest ∼1% tensile strain can significantly alter the lifetimes of electron transfer and nonradiative electron-hole recombination by >30%. Ab initio non-adiabatic molecular dynamics simulations suggest that tensile strain weakens the electron-phonon coupling, thereby suppressing the transfer and recombination dynamics. Theoretical predictions indicate that strain-induced energy difference increases along the electron transfer path could contribute to the prolongation of the transfer lifetime. A subpicosecond decay process, related to hot-electron cooling, remains almost unaffected by strain. This study demonstrates the potential of tuning interlayer carrier dynamics through external strains, offering insights into flexible optoelectronic device design with 2D materials.

19.
J Phys Chem Lett ; 14(40): 9096-9102, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791802

RESUMO

Polaron-based electron transport restricts the photoelectrochemical (PEC) water splitting efficiency of BiVO4. However, the location and dynamics of polarons are significantly dependent on the surface hydroxylation. By performing ab initio nonadiabatic molecular dynamics simulations, we demonstrated that hydroxylation of BiVO4(010) surface greatly alleviates the detrimental effect of oxygen-vacancy-induced electron polaron (EP). Surface hydroxylation stabilizes the EP at the surface to facilitate water splitting, makes the polaron a shallow localized state, and reduces the intensity of high-frequency V-O bond stretching vibrations. By decreasing the nonadiabatic coupling and decoherence time, the charge carrier lifetimes are extended by 1-3 orders of magnitude depending on the hydroxylation coverage. Our study not only reveals that the surface hydroxylation mitigated detrimental impacts of polarons in metal oxides but also provided valuable insights into the benign effect of intermediate species on the photocatalytic reactivity.

20.
J Am Chem Soc ; 145(41): 22826-22835, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796526

RESUMO

A twist angle at a van der Waals junction provides a handle to tune its optoelectronic properties for a variety of applications, and a comprehensive understanding of how the twist modulates electronic structure, interlayer coupling, and carrier dynamics is needed. We employ time-dependent density functional theory and nonadiabatic molecular dynamics to elucidate angle-dependent intervalley carrier transfer and recombination in bilayer WS2. Repulsion between S atoms in twisted configurations weakens interlayer coupling, increases the interlayer distance, and softens layer breathing modes. Twisting has a minor influence on K valleys while it lowers Γ valleys and raises Q valleys because their wave functions are delocalized between layers. Consequently, the reduced energy gaps between the K and Γ valleys accelerate the hole transfer in the twisted structures. Intervalley electron transfer proceeds nearly an order of magnitude faster than hole transfer. The more localized wave functions at K than Q values and larger bandgaps result in smaller nonadiabatic couplings for intervalley recombination, making it 3-4 times slower in twisted than high-symmetry structures. B2g breathing, E2g in-plane, and A1g out-of-plane modes are most active during intervalley carrier transfer and recombination. The faster intervalley transfer and extended carrier lifetimes in twisted junctions are favorable for optoelectronic device performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...