Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889275

RESUMO

MOTIVATION: Single-cell omics technologies have enabled the quantification of molecular profiles in individual cells at an unparalleled resolution. Deep learning, a rapidly evolving sub-field of machine learning, has instilled a significant interest in single-cell omics research due to its remarkable success in analysing heterogeneous high-dimensional single-cell omics data. Nevertheless, the inherent multi-layer nonlinear architecture of deep learning models often makes them 'black boxes' as the reasoning behind predictions is often unknown and not transparent to the user. This has stimulated an increasing body of research for addressing the lack of interpretability in deep learning models, especially in single-cell omics data analyses, where the identification and understanding of molecular regulators are crucial for interpreting model predictions and directing downstream experimental validations. RESULTS: In this work, we introduce the basics of single-cell omics technologies and the concept of interpretable deep learning. This is followed by a review of the recent interpretable deep learning models applied to various single-cell omics research. Lastly, we highlight the current limitations and discuss potential future directions.


Assuntos
Aprendizado Profundo , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Biologia Computacional/métodos , Genômica/métodos
2.
Front Digit Health ; 5: 1154133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168529

RESUMO

Introduction: Drug-drug interaction (DDI) may lead to adverse reactions in patients, thus it is important to extract such knowledge from biomedical texts. However, previously proposed approaches typically focus on capturing sentence-aspect information while ignoring valuable knowledge concerning the whole corpus. In this paper, we propose a Multi-aspect Graph-based DDI extraction model, named DDI-MuG. Methods: We first employ a bio-specific pre-trained language model to obtain the token contextualized representations. Then we use two graphs to get syntactic information from input instance and word co-occurrence information within the entire corpus, respectively. Finally, we combine the representations of drug entities and verb tokens for the final classification. Results: To validate the effectiveness of the proposed model, we perform extensive experiments on two widely used DDI extraction dataset, DDIExtraction-2013 and TAC 2018. It is encouraging to see that our model outperforms all twelve state-of-the-art models. Discussion: In contrast to the majority of earlier models that rely on the black-box approach, our model enables visualization of crucial words and their interrelationships by utilizing edge information from two graphs. To the best of our knowledge, this is the first model that explores multi-aspect graphs to the DDI extraction task, and we hope it can establish a foundation for more robust multi-aspect works in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...