Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3543-3552, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897774

RESUMO

In order to explore the effect of Rosa roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties and realize the resource utilization of R. roxburghii pomace, a pot experiment was conducted to study the effect of R. roxburghii pomace biochar on the yield and quality of Chinese cabbage and soil properties by setting five biochar application rates of 0 % (CK), 1 % (T1), 3 % (T2), 5 % (T3), and 7 % (T4). The results showed that:① The application of R. roxburghii pomace biochar could significantly improve the yield and quality of Chinese cabbage, and the effect was the best at a 5 % biochar application rate. The yield, soluble solids, soluble sugar, vitamin C, total nitrogen, total phosphorus, and total potassium content of Chinese cabbage increased by 71.51 %, 40.14 %, 33.65 %, 38.08 %, 9.03 %, 28.85 %, and 35.38 %, respectively, compared with those in CK. ② The application of biochar from R. roxburghii pomace could significantly improve soil properties and increase soil nutrient content and availability. The effect was better at a 5 % biochar application rate. The soil pH, organic matter, total nitrogen, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium content increased by 41.06 %, 134.84 %, 157.48 %, 140.79 %, 341.75 %, and 627.13 %, respectively, compared with those in CK. The contents of available Fe, Mn, Cu, and Zn and exchangeable Ca and Mg increased by 37.68 %, 61.69 %, 400.00 %, 4 648.84 %, 617.17 %, and 351.42 %, respectively, compared with those in CK. ③ The application of biochar from R. roxburghii pomace could significantly enhance soil enzyme activity. Compared with those in the CK treatment, soil urease, acid phosphatase, catalase, and sucrase increased by 51.43 %-362.86 %, 90.63 %-134.14 %, 21.40 %-85.12 %, and 82.92 %-218.43 %, respectively. ④ Redundancy analysis showed that soil AK; exchangeable Ca, SOM, and AP; and available Zn were the main factors affecting the yield and quality of Chinese cabbage, and there was a significant positive correlation between them. In summary, the application of R. roxburghii pomace biochar can significantly increase the yield and quality of Chinese cabbage and improve soil properties. The preparation of R. roxburghii pomace into biochar can provide a theoretical reference for the rational utilization of R. roxburghii pomace resources.


Assuntos
Brassica , Carvão Vegetal , Rosa , Solo , Brassica/crescimento & desenvolvimento , Carvão Vegetal/química , Rosa/crescimento & desenvolvimento , Solo/química , Fertilizantes , Nitrogênio , Biomassa , Controle de Qualidade , Fósforo
2.
Nat Commun ; 14(1): 55, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599820

RESUMO

Precise stereocontrol of functionalized alkenes represents a long-standing research topic in organic synthesis. Nevertheless, the development of a catalytic, easily tunable synthetic approach for the stereodivergent synthesis of both E-selective and even more challenging Z-selective highly substituted 1,3-dienes from common substrates remains underexploited. Here, we report a photoredox and nickel dual catalytic strategy for the stereodivergent sulfonylalkenylation of terminal alkynes with vinyl triflates and sodium sulfinates under mild conditions. With a judicious choice of simple nickel catalyst and ligand, this method enables efficient and divergent access to both Z- and E-sulfonyl-1,3-dienes from the same set of simple starting materials. This method features broad substrate scope, good functional compatibility, and excellent chemo-, regio-, and stereoselectivity. Experimental and DFT mechanistic studies offer insights into the observed divergent stereoselectivity controlled by ligands.

3.
Environ Res ; 217: 114972, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455631

RESUMO

Turbulence is considered to be the result of coupled time-averaged and pulsating velocities, making it difficult to distinguish the respective effects, and the quantitative effect of turbulent pulsation alone on mass transfer within biofilms has not been discussed in the literature. In this study, we constructed a special oscillating grid biofilm reactor combining Particle Image Velocimetry (PIV) measurements and Computational Fluid Dynamics (CFD) simulations to achieve nearly isotropic turbulence in a designed ambient without time-averaged velocity and shear stress. Subsequently, velocity and contaminant concentration distributions were obtained by solving a mass transfer model with a k-ε turbulence model, combined with measurements of biofilm structure parameters. The results showed that the increase in turbulent pulsation intensity led to a significant stratification of the percolation velocity gradient in biofilms, which enhanced convective mass transfer. The changes of biofilm density and porosity under turbulent pulsation were more strongly correlated with convective mass transfer. When the turbulent intensity (q) increased to 2.50 cm s-1, the removal rate reached the highest value of 96.93%, accelerating the migration of contaminant concentration and the diffusive mass transfer effect was obvious. In addition, the trend of biofilm thickness under turbulent pulsation was consistent with the change of contaminant concentration distribution, and the correlation between them was greater. In summary, at q of 2.50 cm s-1, there was a positive effect on both convection and diffusion mechanisms in biofilms, and the contaminant removal rate and biofilm thickness reached the maximum, which was the recommended turbulent pulsation conditions.


Assuntos
Biofilmes , Hidrodinâmica , Porosidade , Difusão , Reologia
4.
Chemistry ; 28(15): e202104080, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35112744

RESUMO

We report a visible-light-induced three-component sulfonyl-heteroarylation of vinyl ethers with sulfinates and five-membered heteroaryl chlorides. This protocol proceeds via electron-donor-acceptor (EDA) complexes between sulfinates and heteroaryl chlorides, giving ß-sulfonyl alkyl five-membered heteroarenes with high efficiency and excellent regioselectivity under mild and catalyst-free conditions. Utilization of CF3 SO2 Na or CF2 HSO2 Na as coupling partners further achieves three-component fluoromethyl-arylation of vinyl ethers, furnishing a series of valuable CF3 /CF2 H-incorporated alkyl heterocycles under mild conditions.

5.
Bioprocess Biosyst Eng ; 44(9): 1865-1874, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33871701

RESUMO

The flow velocity plays an important role in the growth and characteristics of biofilm in the bioreactor as well as its treatment efficiency, which has been a hot research topic. In a sewage treatment bioreactor, the type of flow is usually turbulence. According to the methods of Reynolds decomposition, the flow velocity of turbulence consists of the time-mean velocity and fluctuation velocity, which usually exist simultaneously in real flow. However, the current research on the influence of turbulence flow velocity mainly focuses on the time-mean velocity, while the fluctuation velocity has not been reported because of very difficult to control. To this end, in this paper, a laboratory oscillating-grid turbulence (OGT) bioreactor with zero time-mean velocity and only fluctuation velocity was designed. In this bioreactor, the fluctuation velocity could be easily manipulated by varying the operational parameters of the grid. Based on the numerical simulation of Gas-liquid two-phase flow, the distributions of fluctuation velocity and corresponding turbulence fluctuation intensity, gas holdup, and Reynolds stress were obtained. After that, the effects of the turbulent fluctuation intensity on the biofilm thickness, density, and composition of extracellular polymeric substances (EPS) were studied experimentally. The results showed that turbulent fluctuation had a significant effect on the physical and chemical properties of biofilms, and the fluctuation velocity promoted the increase in the biofilm density and the content of protein and carbohydrates in EPS. This study was intended to provide theoretical support for the design and operation optimization of bioreactors.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos , Simulação por Computador , Modelos Biológicos , Esgotos/microbiologia , Purificação da Água
6.
Huan Jing Ke Xue ; 41(2): 763-772, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608736

RESUMO

Acicular mullite was modified by ferromanganese binary metal oxide (Mn-Fe) to improve the removal efficiency of endocrine disruptors by traditional water treatment practices, using the commercial ceramsite for comparison. The physicochemical properties of synthesized samples were characterized, and batch adsorption experiments were carried out to study the adsorption efficiency of bisphenol A (BPA) and 17α-ethinylestradiol (EE2) on synthesized samples, investigating how solution chemistry and regeneration may affect the adsorption efficiency. Results show that the manganese oxide loaded on the acicular mullite was manganite with an average particle size of 450 nm. After Mn-Fe impregnation, the specific surface area, cumulative pore volume, and mesoporous ratio of the acicular mullite were significantly increased. The virgin acicular mullite had no removal ability for BPA and EE2, and the removal efficiency of BPA and EE2 by Mn-Fe impregnated acicular mullite were significantly increased. Acicular mullite was more suitable as support material for modified filter material. The adsorption kinetics of BPA and EE2 on Mn-Fe-M were fitted with the intra-particle diffusion model, and found to be mainly affected by intra-particle diffusion. The isothermal adsorption data was best fitted to the Langmuir-Freundlich model, and the maximum adsorption capacities of BPA and EE2 were 5.043 mg·g-1 and 3.990 mg·g-1, respectively. Thermodynamic experiments showed that the adsorption of BPA and EE2 by Mn-Fe embedded in acicular mullite was an endothermic reaction, and the temperature increase is beneficial to the adsorption. The adsorption amount of BPA and EE2 on Mn-Fe embedded in acicular mullite decreased with increasing pH. The increase of ionic strength favored the adsorption removal of BPA and EE2. The co-existing anion of SO42- promoted the adsorption of both BPA and EE2, while CO32- and PO43- inhibited the adsorption of both BPA and EE2 on Mn-Fe embedded in acicular mullite. The adsorbent regeneration test showed that Mn-Fe embedded acicular mullite was an easily recyclable adsorbent. Mn-Fe embedded in high-porosity acicular mullite can effectively remove typical endocrine disruptors in water, and it can be potentially extensively used to alleviate the problem of low removal efficiency of endocrine disrupting chemicals in traditional water treatment practice.

7.
Chem Sci ; 9(48): 9012-9017, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30647893

RESUMO

An efficient, metal-free strategy for the intermolecular three-component carbopyridylation of styrenes, enabled by Hantzsch ester and visible light, has been described. This versatile protocol gives access to important ß-CF3 pyridines, through the regioselective, sequential formation of two C-C bonds without the use of exogenous catalysts. The value of this benign protocol has been demonstrated through functionalizations of natural-product- and drug-based complex molecules.

8.
Huan Jing Ke Xue ; 34(5): 1761-6, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23914525

RESUMO

Through a self-designed vertically oscillating grid experiment device, the experiment was carried out to research the effects of the turbulence fluctuation intensity on the growth of algae and water environment in the water with adequate nutrients by changing the vibration frequency under a certain light and temperature conditions. The results showed that: the turbulent fluctuation has significant effects on algae growing that weak turbulence fluctuation can promote the growth of algae and strong turbulence fluctuation will inhibit the growth of algae in the range of experimental level. With the increase of the turbulent fluctuation intensity, the peak of algal biomass gradually delayed. Changes of nitrogen and phosphorus in the experimental process have significant differences, when the vibration frequency was up to 2.0 Hz, the maximum reduction of TN and TP were 55.2% and 69.0% lower compared with 0.5 Hz, which was closely associated with the growth of algae. With the intensity of turbulent fluctuation increases, nitrogen-phosphorus ratio first increases and then decreases corresponding to the peak of the algal biomass. Turbulent fluctuation can promote the pH and, dissolved oxygen quickly adjusted to the level of algae growing required, and the most appropriate value remains unchanged.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Movimentos da Água , Água/química , Simulação por Computador , Nitrogênio/análise , Oxigênio/análise , Fósforo/análise , Solubilidade
9.
Environ Monit Assess ; 184(6): 3731-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21755426

RESUMO

Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.


Assuntos
Sedimentos Geológicos/química , Fenômenos Geológicos , Chuva/química , Solo/química , China , Simulação por Computador , Monitoramento Ambiental , Sistemas de Informação Geográfica , Cinética , Tempo , Movimentos da Água
10.
Huan Jing Ke Xue ; 31(7): 1498-503, 2010 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-20825016

RESUMO

By introducing two parameters which express the optimal velocity and the velocity range for alga growth, a new velocity factor was put forward for the formula of alga growth. The 2-D unsteady ecological dynamic model for algae growth was established to analyze the effects of hydrodynamic condition on algae growth in Chongqing reaches of Jialing River. The space-time distribution of concentration for Chl-a was simulated numerically for various water levels under climate condition in the period of high frequency for water blooms in Three Gorges Reservoir and nutrition condition at present. The corresponding location and area of water blooms were forecasted. The results stated that about 0.04 m x s(-1) was the optimal velocity for algae growth.


Assuntos
Eutrofização , Água Doce/análise , Modelos Teóricos , China , Simulação por Computador , Hidrodinâmica , Rios , Poluição Química da Água/análise
11.
Water Sci Technol ; 61(6): 1601-16, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20351440

RESUMO

Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the different land-use type distribution has great impacts on the spatial changes of dissolved nitrogen and phosphorus load in the watershed; The nitrogen and phosphorus load of different land-use types in size with descending order is, glebe and mixed land, paddy, grassland, urban land, forestland; however, for the phosphorus load, the unit area output load of glebe and mixed land is almost the same as for paddy fields; The output contribution of nitrogen and phosphorus pollution load from land-use accounts for 78%-85%, while the output contribution from livestock and poultry occupies 13%-20%. The established load model was verified by observation data, simulation results show that the established model is reasonable, simulation accuracy is higher.


Assuntos
Simulação por Computador , Nitrogênio/química , Fósforo/química , Poluição Química da Água , Água/química , China , Atividades Humanas , Modelos Teóricos , População Rural , Esgotos , Movimentos da Água
12.
Huan Jing Ke Xue ; 29(7): 1811-7, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18828359

RESUMO

Based on the American Universal Soil Loss Equation, focused on the two main factors that are hydrology condition and land management practice which can influence the soil loss in the watershed change yearly, and took into account the sediment transport process which can effect the soil loss differ spatially, a new sediment load evaluation method was put forward which can reflect the yearly change process of soil loss. Took Jialing River basin as a research example and validated the new evaluation method. Furthermore, according to the correlation between the sediment load and adsorbed nitrogen and phosphorus pollution load, established a yearly load evaluation model of the adsorbed nitrogen and phosphorus pollution. By virtue of the geographical information technology, the yearly load and spatial distribution of the adsorbed nitrogen and phosphorus pollution due to soil erosion in the Jialing River basin from 1990 to 2005 have been studied by the established model. The results show that adsorbed phase of nitrogen and phosphorus pollution are quite seriously in the subbasin of Bailong River and Xihanshui River. In recent years, adsorbed nitrogen and phosphorus pollution loads have declined year by year because of the conservation practices of soil and water in this basin. The average loads of adsorbed nitrogen and phosphorus pollution are 34 423 t/a and 1 848 t/a respectively in the past five years, which have reduced by about 60% from 1990.


Assuntos
Sedimentos Geológicos/análise , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Adsorção , Algoritmos , China , Eutrofização , Geografia , Modelos Teóricos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...