Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 505: 153843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801936

RESUMO

Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 µM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diferenciação Celular , MicroRNAs , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células K562 , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Metiltransferases/genética , Metiltransferases/metabolismo
2.
Environ Sci Pollut Res Int ; 31(21): 30779-30792, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613763

RESUMO

Individual typical endocrine-disrupting chemicals (EDCs), including organophosphate triesters (OPEs), parabens, triclosan (TCS), bisphenols, benzophenones (BPs), phthalates (PAEs), and synthetic phenolic antioxidants (SPAs), are associated with renal dysfunction. However, the combined effects and underlying mechanisms of mixed EDC exposure on renal function remain unclear. Two hundred ninety-nine adult participants were enrolled in the cross-sectional survey conducted in Guangzhou, China. Urinary levels of 7 OPEs, 6 parabens, TCS, 14 bisphenols, 8 BPs, 15 PAEs, 4 SPAs, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were determined, and estimated glomerular filtration rate (eGFR) was served as the outcome index. We found elevated levels of diphenyl phosphate (DPP), bisphenol A (BPA), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono-butyl phthalate (MBP) showed dose-responsive associations with eGFR decline, However, nonlinear associations were observed for bis(2-butoxyethyl) hydrogen phosphate (BBOEP), TCS, 4-hydroxybenzophenone (HBP), mono-n-pentyl phthalate (MnPP), and mono-benzyl phthalate (MBzP). The quantile-based g-computation model demonstrated that a quartile increase in the EDC mixture corresponded to a 0.383-SD decrease (95% CI - 0.658 ~ - 0.108, P = 0.007) in eGFR. Notably, BPA was identified as the primary contributor to this effect. Moreover, 8-OHdG mediated the eGFR decline associated with EDC mixtures with a mediation proportion of 25.49%. A sex-modified effect was also observed (P = 0.004), indicating that exposure to the mixture of EDC was linked to more pronounced renal dysfunction in females. Our novel findings suggest that exposure to a typical mixture of EDCs is associated with renal dysfunction in the general adult population of Southern China. Furthermore, 8-OHdG may play a role in the pathogenesis of EDC mixture-related renal dysfunction.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Disruptores Endócrinos , Humanos , Adulto , China , Estudos Transversais , Feminino , 8-Hidroxi-2'-Desoxiguanosina/urina , Masculino , Pessoa de Meia-Idade , Fenóis , Compostos Benzidrílicos , Exposição Ambiental , Ácidos Ftálicos , Taxa de Filtração Glomerular/efeitos dos fármacos , População do Leste Asiático
3.
Environ Res ; 251(Pt 2): 118708, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493858

RESUMO

The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 µM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 µg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.


Assuntos
Chumbo , Medição de Risco/métodos , Humanos , Chumbo/toxicidade , Barreira Hematoencefálica/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Relação Dose-Resposta a Droga
4.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395129

RESUMO

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Assuntos
Glioxilatos , Nefropatias , Ácidos Mandélicos , Exposição Ocupacional , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Estireno/análise , Estudos Transversais , Derivados de Benzeno/análise , Exposição Ocupacional/análise
5.
ACS Appl Mater Interfaces ; 13(31): 37102-37110, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333980

RESUMO

The exploration of highly efficient materials for the degradation of chemical warfare agents has been a longstanding task for preventing human exposure. Herein, we report a series of metal-organic frameworks (MOFs) M-TCPP-La based on metallo-tetra(4-carboxyphenyl)porphyrin and LaIII, which were applied to selectively oxidize 2-chloroethyl ethyl sulfide (CEES, a sulfur mustard simulant) as heterogeneous photocatalysts. After irradiation from a commercial blue light-emitting diode (LED), both superoxide ion and singlet oxygen were generated by M-TCPP-La and involved in selective oxidization of CEES to 2-chloroethyl ethyl sulfoxide (CEESO). Notably, a very short half lifetime (2.5 min) was achieved using Fe-TCPP-La as the photocatalyst. In comparison to currently utilizing singlet oxygen and hydrogen peroxide as oxidizing agents, this work employing both singlet oxygen and superoxide ion represents a new and effective strategy of detoxification of mustard gas.

6.
Inorg Chem ; 60(14): 10380-10386, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34171190

RESUMO

Water oxidation to molecular oxygen is indispensable but a challenge for splitting H2O. In this work, a series of Co-based metal-organic cages (MOCs) for photoinduced water oxidation were prepared. MOC-1 with both bis(µ-oxo) bridged dicobalt and Co-O (O from H2O) displays catalytic activity with an initial oxygen evolution rate of 80.4 mmol/g/h and a TOF of 7.49 × 10-3 s-1 in 10 min. In contrast, MOC-2 containing only Co-O (O from H2O) in the structure results in a lower oxygen evolution rate (40.8 mmol/g/h, 4.78 × 10-3 s-1), while the amount of oxygen evolved from the solution of MOC-4 without both active sites is undetectable. Isotope experiments with or without H218O as the reactant successfully demonstrate that the molecular oxygen was produced from water oxidation. Photophysical and electrochemical studies reveal that photoinduced water oxidation initializes via electron transfer from the excited [Ru(bpy)3]2+* to Na2S2O8, and then, the cobalt active sites further donate electrons to the oxidized [Ru(bpy)3]3+ to drive water oxidation. This proof-of-concept study indicates that MOCs can work as potential efficient catalysts for photoinduced water oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...