Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38947096

RESUMO

Static cold storage of donor livers at 4°C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (H2S) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. H2S is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations. AP39, a mitochondrially targeted, slow-release H2S donor, has been shown to reduce ischemia-reperfusion injury in hearts and kidneys. Thus, we investigated whether the addition of AP39 during 3-day static cold storage can improve liver graft viability. At the end of storage, livers underwent six hours of acellular normothermic machine perfusion, a model of transplantation. During simulated transplantation, livers stored with AP39 showed reduced resistance, reduced cellular damage (ALT and AST), and reduced apoptosis. Additionally, bile production and glucose, as well as energy charge were improved by the addition of AP39. These results indicate that AP39 supplementation improves liver viability during static cold storage.

2.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005372

RESUMO

Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity. Indirect calorimetry showed that SAAR increased lipid oxidation at rest and delayed the onset of carbohydrate utilization during exercise. Transcriptomic analysis revealed increased expression of genes involved in fatty acid catabolism especially in glycolytic muscle following SAAR. These findings were functionally supported by increased fatty acid circulatory turnover flux and muscle ß-oxidation. Reducing lipid uptake from circulation through endothelial cell (EC)-specific CD36 deletion attenuated the running phenotype. Mechanistically, VEGF-signaling inhibition prevented exercise increases following SAAR, without affecting angiogenesis, implicating noncanonical VEGF signaling and EC CD36-dependent fatty acid transport in regulating exercise capacity by influencing muscle substrate availability.

3.
Res Sq ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39011100

RESUMO

Preserving organs at subzero temperatures with halted metabolic activity holds the potential to prolong preservation and expand the donor organ pool for transplant. Our group recently introduced partial freezing, a novel approach in high-subzero storage at -15°C, enabling 5 days storage of rodent livers through precise control over ice nucleation and unfrozen fraction. However, increased vascular resistance and tissue edema suggested a need for improvements to extend viable preservation. Here, we describe an optimized partial freezing protocol with key optimizations including increased concentration of propylene glycol to reduce ice recrystallization and maintained osmotic balance through an increase in bovine serum albumin, all while minimizing sheer stress during cryoprotectant unloading with an acclimation period. These approaches ensured the viability during preservation and recovery processes, promoting liver function and ensuring optimal preservation. This was evidenced by increased oxygen consumption, decreased vascular resistance and edema. Ultimately, we show that using the optimized protocol, livers can be stored for 10 days with comparable vascular resistance and lactate levels to 5 days, outperforming the viability of time-matched cold stored livers as the current gold standard. This study represents a significant advancement in expanding organ availability through prolonged preservation and thereby revolutionizing transplant medicine.

4.
Transplant Direct ; 10(4): e1609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481967

RESUMO

Background: Brief normothermic machine perfusion is increasingly used to assess and recondition grafts before transplant. During normothermic machine perfusion, metabolic activity is typically maintained using red blood cell (RBC)-based solutions. However, the utilization of RBCs creates important logistical constraints. This study explored the feasibility of human kidney normothermic perfusion using William's E-based perfusate with no additional oxygen carrier. Methods: Sixteen human kidneys declined for transplant were perfused with a perfusion solution containing packed RBCs or William's E medium only for 6 h using a pressure-controlled system. The temperature was set at 37 °C. Renal artery resistance, oxygen extraction, metabolic activity, energy metabolism, and histological features were evaluated. Results: Baseline donor demographics were similar in both groups. Throughout perfusion, kidneys perfused with William's E exhibited improved renal flow (P = 0.041) but similar arterial resistance. Lactic acid levels remained higher in kidneys perfused with RBCs during the first 3 h of perfusion but were similar thereafter (P = 0.95 at 6 h). Throughout perfusion, kidneys from both groups exhibited comparable behavior regarding oxygen consumption (P = 0.41) and reconstitution of ATP tissue concentration (P = 0.55). Similarly, nicotinamide adenine dinucleotide levels were preserved during perfusion. There was no evidence of histological damage caused by either perfusate. Conclusions: In human kidneys, William's E medium provides a logistically convenient, off-the-shelf alternative to packed RBCs for up to 6 h of normothermic machine perfusion.

5.
Nat Commun ; 15(1): 1073, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316771

RESUMO

Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.


Assuntos
Dieta da Carga de Carboidratos , Fatores de Crescimento de Fibroblastos , Traumatismo por Reperfusão , Procedimentos Cirúrgicos Operatórios , Animais , Feminino , Humanos , Masculino , Camundongos , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/cirurgia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/metabolismo
6.
Transplant Direct ; 9(11): e1508, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915463

RESUMO

Background: In rodents, hydrogen sulfide (H2S) reduces ischemia-reperfusion injury and improves renal graft function after transplantation. Here, we hypothesized that the benefits of H2S are conserved in pigs, a more clinically relevant model. Methods: Adult porcine kidneys retrieved immediately or after 60 min of warm ischemia (WI) were exposed to 100 µM sodium hydrosulfide (NaHS) (1) during the hypothermic ex vivo perfusion only, (2) during WI only, and (3) during both WI and ex vivo perfusion. Kidney perfusion was evaluated with dynamic contrast-enhanced MRI. MRI spectroscopy was further employed to assess energy metabolites including ATP. Renal biopsies were collected at various time points for histopathological analysis. Results: Perfusion for 4 h pig kidneys with Belzer MPS UW + NaHS resulted in similar renal perfusion and ATP levels than perfusion with UW alone. Similarly, no difference was observed when NaHS was administered in the renal artery before ischemia. After autotransplantation, no improvement in histologic lesions or cortical/medullary kidney perfusion was observed upon H2S administration. In addition, AMP and ATP levels were identical in both groups. Conclusions: In conclusion, treatment of porcine kidney grafts using NaHS did not result in a significant reduction of ischemia-reperfusion injury or improvement of kidney metabolism. Future studies will need to define the benefits of H2S in human, possibly using other molecules as H2S donors.

8.
JVS Vasc Sci ; 4: 100095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852171

RESUMO

Objective: Hydrogen sulfide is a proangiogenic gas produced primarily by the transsulfuration enzyme cystathionine-γ-lyase (CGL). CGL-dependent hydrogen sulfide production is required for neovascularization in models of peripheral arterial disease. However, the benefits of increasing endogenous CGL and its mechanism of action have not yet been elucidated. Methods: Male whole body CGL-overexpressing transgenic (CGLTg) mice and wild-type (WT) littermates (C57BL/6J) were subjected to the hindlimb ischemia model (age, 10-12 weeks). Functional recovery was assessed via the treadmill exercise endurance test. Leg perfusion was measured by laser Doppler imaging and vascular endothelial-cadherin immunostaining. To examine the angiogenic potential, aortic ring sprouting assay and postnatal mouse retinal vasculature development studies were performed. Finally, comparative metabolomics analysis, oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH) analysis, and quantitative real-time polymerase chain reaction were performed on CGLWT and CGLTg gastrocnemius muscle. Results: The restoration of blood flow occurred more rapidly in CGLTg mice. Compared with the CGLWT mice, the median ± standard deviation running distance and time were increased for the CGLTg mice after femoral artery ligation (159 ± 53 m vs 291 ± 74 m [P < .005] and 17 ± 4 minutes vs 27 ± 5 minutes [P < .05], respectively). Consistently, in the CGLTg ischemic gastrocnemius muscle, the capillary density was increased fourfold (0.05 ± 0.02 vs 0.20 ± 0.12; P < .005). Ex vivo, the endothelial cell (EC) sprouting length was increased in aorta isolated from CGLTg mice, especially when cultured in VEGFA (vascular endothelial growth factor A)-only media (63 ± 2 pixels vs 146 ± 52 pixels; P < .05). Metabolomics analysis demonstrated a higher level of niacinamide, a precursor of NAD+/NADH in the muscle of CGLTg mice (61.4 × 106 ± 5.9 × 106 vs 72.4 ± 7.7 × 106 area under the curve; P < .05). Similarly, the NAD+ salvage pathway gene expression was increased in CGLTg gastrocnemius muscle. Finally, CGL overexpression or supplementation with the NAD+ precursor nicotinamide mononucleotide improved EC migration in vitro (wound closure: control, 35% ± 9%; CGL, 55% ± 11%; nicotinamide mononucleotide, 42% ± 13%; P < .05). Conclusions: Our results have demonstrated that CGL overexpression improves the neovascularization of skeletal muscle on hindlimb ischemia. These effects correlated with changes in the NAD pathway, which improved EC migration.

9.
Magn Reson Med ; 89(1): 40-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36161342

RESUMO

PURPOSE: We have introduced an artificial intelligence framework, 31P-SPAWNN, in order to fully analyze phosphorus-31 ( 31 $$ {}^{31} $$ P) magnetic resonance spectra. The flexibility and speed of the technique rival traditional least-square fitting methods, with the performance of the two approaches, are compared in this work. THEORY AND METHODS: Convolutional neural network architectures have been proposed for the analysis and quantification of 31 $$ {}^{31} $$ P-spectroscopy. The generation of training and test data using a fully parameterized model is presented herein. In vivo unlocalized free induction decay and three-dimensional 31 $$ {}^{31} $$ P-magnetic resonance spectroscopy imaging data were acquired from healthy volunteers before being quantified using either 31P-SPAWNN or traditional least-square fitting techniques. RESULTS: The presented experiment has demonstrated both the reliability and accuracy of 31P-SPAWNN for estimating metabolite concentrations and spectral parameters. Simulated test data showed improved quantification using 31P-SPAWNN compared with LCModel. In vivo data analysis revealed higher accuracy at low signal-to-noise ratio using 31P-SPAWNN, yet with equivalent precision. Processing time using 31P-SPAWNN can be further shortened up to two orders of magnitude. CONCLUSION: The accuracy, reliability, and computational speed of the method open new perspectives for integrating these applications in a clinical setting.


Assuntos
Inteligência Artificial , Fósforo , Humanos , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Redes Neurais de Computação
11.
Artigo em Inglês | MEDLINE | ID: mdl-38682043

RESUMO

Ex-vivo preservation of transplanted organs is undergoing spectacular advances. Machine perfusion is now used in common practice for abdominal and thoracic organ transportation and preservation, and early results are in favor of substantially improved outcomes. It is based on decreasing ischemia-reperfusion phenomena by providing physiological or sub-physiological conditions until transplantation. Alternatively, supercooling techniques involving static preservation at negative temperatures while avoiding ice formation have shown encouraging results in solid organs. Here, the rationale is to decrease the organ's metabolism and need for oxygen and nutrients, allowing for extended preservation durations. The aim of this work is to review all advances of supercooling in transplantation, browsing the literature for each organ. A specific objective was also to study the initial evidence, the prospects, and potential applications of supercooling preservation in Vascularized Composite Allotransplantation (VCA). This complex entity needs a substantial effort to improve long-term outcomes, marked by chronic rejection. Improving preservation techniques is critical to ensure the favorable evolution of VCAs, and supercooling techniques could greatly participate in these advances.

12.
Front Cardiovasc Med ; 9: 965965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262202

RESUMO

Therapies to accelerate vascular repair are currently lacking. Pre-clinical studies suggest that hydrogen sulfide (H2S), an endogenous gasotransmitter, promotes angiogenesis. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source of H2S, would stimulate angiogenesis and vascular repair. STS stimulated neovascularization in WT and LDLR receptor knockout mice following hindlimb ischemia as evidenced by increased leg perfusion assessed by laser Doppler imaging, and capillary density in the gastrocnemius muscle. STS also promoted VEGF-dependent angiogenesis in matrigel plugs in vivo and in the chorioallantoic membrane of chick embryos. In vitro, STS and NaHS stimulated human umbilical vein endothelial cell (HUVEC) migration and proliferation. Seahorse experiments further revealed that STS inhibited mitochondrial respiration and promoted glycolysis in HUVEC. The effect of STS on migration and proliferation was glycolysis-dependent. STS probably acts through metabolic reprogramming of endothelial cells toward a more proliferative glycolytic state. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases.

13.
Transplant Direct ; 8(10): e1354, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36176724

RESUMO

The ideal preservation temperature for donation after circulatory death kidney grafts is unknown. We investigated whether subnormothermic (22 °C) ex vivo kidney machine perfusion could improve kidney metabolism and reduce ischemia-reperfusion injury. Methods: To mimic donation after circulatory death procurement, kidneys from 45-kg pigs underwent 60 min of warm ischemia. Kidneys were then perfused ex vivo for 4 h with Belzer machine perfusion solution UW at 22 °C or at 4 °C before transplantation. Magnetic resonance spectroscopic imaging coupled with LCModel fitting was used to assess energy metabolites. Kidney perfusion was evaluated with dynamic-contrast enhanced MRI. Renal biopsies were collected at various time points for histopathologic analysis. Results: Total adenosine triphosphate content was 4 times higher during ex vivo perfusion at 22 °C than at 4 °C perfusion. At 22 °C, adenosine triphosphate levels increased during the first hours of perfusion but declined afterward. Similarly, phosphomonoesters, containing adenosine monophosphate, were increased at 22 °C and then slowly consumed over time. Compared with 4 °C, ex vivo perfusion at 22 °C improved cortical and medullary perfusion. Finally, kidney perfusion at 22 °C reduced histological lesions after transplantation (injury score: 22 °C: 10.5 ± 3.5; 4 °C: 18 ± 2.25 over 30). Conclusions: Ex vivo kidney perfusion at 22°C improved graft metabolism and protected from ischemia-reperfusion injuries upon transplantation. Future clinical studies will need to define the benefits of subnormothermic perfusion in improving kidney graft function and patient's survival.

14.
Cell Rep ; 40(7): 111187, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977507

RESUMO

Dietary protein restriction (PR) has rapid effects on metabolism including improved glucose and lipid homeostasis, via multiple mechanisms. Here, we investigate responses of fecal microbiome, hepatic transcriptome, and hepatic metabolome to six diets with protein from 18% to 0% of energy in mice. PR alters fecal microbial composition, but metabolic effects are not transferable via fecal transplantation. Hepatic transcriptome and metabolome are significantly altered in diets with lower than 10% energy from protein. Changes upon PR correlate with calorie restriction but with a larger magnitude and specific changes in amino acid (AA) metabolism. PR increases steady-state aspartate, serine, and glutamate and decreases glucose and gluconeogenic intermediates. 13C6 glucose and glycerol tracing reveal increased fractional enrichment in aspartate, serine, and glutamate. Changes remain intact in hepatic ATF4 knockout mice. Together, this demonstrates an ATF4-independent shift in gluconeogenic substrate utilization toward specific AAs, with compensation from glycerol to promote a protein-sparing response.


Assuntos
Glucose , Glicerol , Animais , Ácido Aspártico/metabolismo , Proteínas Alimentares/metabolismo , Gluconeogênese , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Glicerol/metabolismo , Fígado/metabolismo , Camundongos , Serina/metabolismo
15.
Front Immunol ; 13: 900594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757701

RESUMO

Organ allotransplantation has now reached an impassable ceiling inherent to the limited supply of human donor organs. In the United States, there are currently over 100,000 individuals on the national transplant waiting list awaiting a kidney, heart, and/or liver transplant. This is in contrast with only a fraction of them receiving a living or deceased donor allograft. Given the morbidity, mortality, costs, or absence of supportive treatments, xenotransplant has the potential to address the critical shortage in organ grafts. Last decade research efforts focused on creation of donor organs from pigs with various genes edited out using CRISPR technologies and utilizing non-human primates for trial. Three groups in the United States have recently moved forward with trials in human subjects and obtained initial successful results with pig-to-human heart and kidney xenotransplantation. This review serves as a brief discussion of the recent progress in xenotransplantation research, particularly as it concerns utilization of porcine heart, renal, and liver xenografts in clinical practice.


Assuntos
Doadores de Tecidos , Transplantes , Animais , Xenoenxertos , Humanos , Primatas , Suínos , Transplante Heterólogo , Estados Unidos
16.
Front Cardiovasc Med ; 9: 876639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479275

RESUMO

Arterial occlusive disease is the narrowing of the arteries via atherosclerotic plaque buildup. The major risk factors for arterial occlusive disease are age, high levels of cholesterol and triglycerides, diabetes, high blood pressure, and smoking. Arterial occlusive disease is the leading cause of death in Western countries. Patients who suffer from arterial occlusive disease develop peripheral arterial disease (PAD) when the narrowing affects limbs, stroke when the narrowing affects carotid arteries, and heart disease when the narrowing affects coronary arteries. When lifestyle interventions (exercise, diet…) fail, the only solution remains surgical endovascular and open revascularization. Unfortunately, these surgeries still suffer from high failure rates due to re-occlusive vascular wall adaptations, which is largely due to intimal hyperplasia (IH). IH develops in response to vessel injury, leading to inflammation, vascular smooth muscle cells dedifferentiation, migration, proliferation and secretion of extra-cellular matrix into the vessel's innermost layer or intima. Re-occlusive IH lesions result in costly and complex recurrent end-organ ischemia, and often lead to loss of limb, brain function, or life. Despite decades of IH research, limited therapies are currently available. Hydrogen sulfide (H2S) is an endogenous gasotransmitter derived from cysteine metabolism. Although environmental exposure to exogenous high H2S is toxic, endogenous H2S has important vasorelaxant, cytoprotective and anti-inflammatory properties. Its vasculo-protective properties have attracted a remarkable amount of attention, especially its ability to inhibit IH. This review summarizes IH pathophysiology and treatment, and provides an overview of the potential clinical role of H2S to prevent IH and restenosis.

17.
Nutrients ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406143

RESUMO

Radiation therapy damages and depletes total bone marrow (BM) cellularity, compromising safety and limiting effective dosing. Aging also strains total BM and BM hematopoietic stem and progenitor cell (HSPC) renewal and function, resulting in multi-system defects. Interventions that preserve BM and BM HSPC homeostasis thus have potential clinical significance. Here, we report that 50% calorie restriction (CR) for 7-days or fasting for 3-days prior to irradiation improved mouse BM regrowth in the days and weeks post irradiation. Specifically, one week of 50% CR ameliorated loss of total BM cellularity post irradiation compared to ad libitum-fed controls. CR-mediated BM protection was abrogated by dietary sulfur amino acid (i.e., cysteine, methionine) supplementation or pharmacological inhibition of sulfur amino acid metabolizing and hydrogen sulfide (H2S) producing enzymes. Up to 2-fold increased proliferative capacity of ex vivo-irradiated BM isolated from food restricted mice relative to control mice indicates cell autonomy of the protective effect. Pretreatment with H2S in vitro was sufficient to preserve proliferative capacity by over 50% compared to non-treated cells in ex vivo-irradiated BM and BM HSPCs. The exogenous addition of H2S inhibited Ten eleven translocation 2 (TET2) activity in vitro, thus providing a potential mechanism of action. Short-term CR or fasting therefore offers BM radioprotection and promotes regrowth in part via altered sulfur amino acid metabolism and H2S generation, with translational implications for radiation treatment and aging.


Assuntos
Sulfeto de Hidrogênio , Lesões por Radiação , Animais , Medula Óssea/metabolismo , Restrição Calórica , Suplementos Nutricionais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Radiação Ionizante
18.
EBioMedicine ; 78: 103954, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35334307

RESUMO

BACKGROUND: Intimal hyperplasia (IH) remains a major limitation in the long-term success of any type of revascularisation. IH is due to vascular smooth muscle cell (VSMC) dedifferentiation, proliferation and migration. The gasotransmitter Hydrogen Sulfide (H2S), mainly produced in blood vessels by the enzyme cystathionine- γ-lyase (CSE), inhibits IH in pre-clinical models. However, there is currently no H2S donor available to treat patients. Here we used sodium thiosulfate (STS), a clinically-approved source of sulfur, to limit IH. METHODS: Low density lipoprotein receptor deleted (LDLR-/-), WT or Cse-deleted (Cse-/-) male mice randomly treated with 4 g/L STS in the water bottle were submitted to focal carotid artery stenosis to induce IH. Human vein segments were maintained in culture for 7 days to induce IH. Further in vitro studies were conducted in primary human vascular smooth muscle cells (VSMCs). FINDINGS: STS inhibited IH in WT mice, as well as in LDLR-/- and Cse-/- mice, and in human vein segments. STS inhibited cell proliferation in the carotid artery wall and in human vein segments. STS increased polysulfides in vivo and protein persulfidation in vitro, which correlated with microtubule depolymerisation, cell cycle arrest and reduced VSMC migration and proliferation. INTERPRETATION: STS, a drug used for the treatment of cyanide poisoning and calciphylaxis, protects against IH in a mouse model of arterial restenosis and in human vein segments. STS acts as an H2S donor to limit VSMC migration and proliferation via microtubule depolymerisation. FUNDING: This work was supported by the Swiss National Science Foundation (grant FN-310030_176158 to FA and SD and PZ00P3-185927 to AL); the Novartis Foundation to FA; and the Union des Sociétés Suisses des Maladies Vasculaires to SD, and the Fondation pour la recherche en chirurgie vasculaire et thoracique.


Assuntos
Sulfeto de Hidrogênio , Animais , Proliferação de Células , Cistationina gama-Liase/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hiperplasia/patologia , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Tiossulfatos , Tubulina (Proteína)/metabolismo
19.
Nat Commun ; 13(1): 967, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181679

RESUMO

Inhibition of the master growth regulator mTORC1 (mechanistic target of rapamycin complex 1) slows ageing across phyla, in part by reducing protein synthesis. Various stresses globally suppress protein synthesis through the integrated stress response (ISR), resulting in preferential translation of the transcription factor ATF-4. Here we show in C. elegans that inhibition of translation or mTORC1 increases ATF-4 expression, and that ATF-4 mediates longevity under these conditions independently of ISR signalling. ATF-4 promotes longevity by activating canonical anti-ageing mechanisms, but also by elevating expression of the transsulfuration enzyme CTH-2 to increase hydrogen sulfide (H2S) production. This H2S boost increases protein persulfidation, a protective modification of redox-reactive cysteines. The ATF-4/CTH-2/H2S pathway also mediates longevity and increased stress resistance from mTORC1 suppression. Increasing H2S levels, or enhancing mechanisms that H2S influences through persulfidation, may represent promising strategies for mobilising therapeutic benefits of the ISR, translation suppression, or mTORC1 inhibition.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sulfeto de Hidrogênio/metabolismo , Longevidade/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais/genética
20.
Ann Vasc Surg ; 83: 142-151, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34687888

RESUMO

BACKGROUND: In the recent years, an increased use of marginal donors and grafts and a growing prevalence of peripheral arterial disease in the recipients have been observed. Meanwhile, the open surgical technique for kidney transplantation has not changed. The aim of this study is to analyze all surgical complications occurring in the first year after kidney transplant and to determine potential predictive risk factors. METHODS: Data of the 399 patients who underwent kidney transplant in our University Hospital between January 2006 and December 2015 were retrospectively reviewed. The primary endpoint was the overall rate of vascular, parietal and urological complications at 1 year following kidney transplantation. The secondary outcomes were graft and patient' survival rates, and the identification of predictive factors of the surgical complications. RESULTS: 24% of patients developed 134 complications. Vascular complication represented 39% of all complications and resulted in 9 graft losses. Parietal and urological complications represented 46-15% of all complications, respectively, No parietal or urological complications were associated with graft loss. 5 patients died during the 1st year, none of these cases was associated with graft loss. The graft survival rate reached 96% at 1 year, including patients still alive. The occurrence of surgical complication was associated with reduced graft survival at 1 year. Using a multivariate analysis, 4 predictive factors were identified: age, deceased donor, operative time and dyslipidemia. CONCLUSION: Surgical complications after kidney transplantation remained frequent and age, deceased kidney donors, and operative time were identified as risk factors. As vascular complications were a major cause of early graft loss, efforts should aim to reduce their occurrence to increase graft survival.


Assuntos
Transplante de Rim , Sobrevivência de Enxerto , Humanos , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Doadores de Tecidos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...