Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Mycol ; 54(4): 428-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26092103

RESUMO

Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 µg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Fluconazol/farmacologia , Fusarium/metabolismo , Nanopartículas Metálicas/química , Prata/farmacologia , Antifúngicos/química , Farmacorresistência Fúngica , Fluconazol/química , Plâncton/efeitos dos fármacos , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...