Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195744

RESUMO

SUMMARY: Today, hundreds of post-translational modification (PTM) sites are routinely identified at once, but the comparison of new experimental datasets to already existing ones is hampered by the current inability to search most PTM databases at the protein residue level. We present FLAMS (Find Lysine Acylations and other Modification Sites), a Python3-based command line and web-tool that enables researchers to compare their PTM sites to the contents of the CPLM, the largest dedicated protein lysine modification database, and dbPTM, the most comprehensive general PTM database, at the residue level. FLAMS can be integrated into PTM analysis pipelines, allowing researchers to quickly assess the novelty and conservation of PTM sites across species in newly generated datasets, aiding in the functional assessment of sites and the prioritization of sites for further experimental characterization. AVAILABILITY AND IMPLEMENTATION: FLAMS is implemented in Python3, and freely available under an MIT license. It can be found as a command line tool at https://github.com/hannelorelongin/FLAMS, pip and conda; and as a web service at https://www.biw.kuleuven.be/m2s/cmpg/research/CSB/tools/flams/.


Assuntos
Lisina , Processamento de Proteína Pós-Traducional , Bases de Dados de Proteínas , Acilação
2.
Curr Opin Microbiol ; 77: 102425, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38262273

RESUMO

During phage infection, both virus and bacteria attempt to gain and/or maintain control over critical bacterial functions, through a plethora of strategies. These strategies include posttranslational modifications (PTMs, including phosphorylation, ribosylation, and acetylation), as rapid and dynamic regulators of protein behavior. However, to date, knowledge on the topic remains scarce and fragmented, while a more systematic investigation lies within reach. The release of AlphaFold, which advances PTM enzyme discovery and functional elucidation, and the increasing inclusivity and scale of mass spectrometry applications to new PTM types, could significantly accelerate research in the field. In this review, we highlight the current knowledge on PTMs during phage infection, and conceive a possible pipeline for future research, following an enzyme-target-function scheme.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...