Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201515

RESUMO

Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks containing enzymes present a low shelf life because enzymes in suspension rapidly lose their catalytic activity. Other major problems of printing these inks are the non-specific adsorption of enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or mechanical stress. It is well known that the catalytic activity can be preserved for significantly longer periods of time and to harsher operational conditions when enzymes are immobilized onto adequate surfaces. Therefore, in this work, horseradish peroxidase was covalently immobilized onto silica nanoparticles. Then, the nanoparticles were mixed into an aqueous ink containing single walled carbon nanotubes. Electrodes printed with this specially formulated ink were characterized, and enzyme electrodes were printed. To test the performance of the enzyme electrodes, a complete amperometric hydrogen peroxide biosensor was fabricated by inkjet printing. The electrochemical response of the printed electrodes was evaluated by cyclic voltammetry in solutions containing redox species, such as hexacyanoferrate (III/II) ions or hydroquinone. The response of the enzyme electrodes was studied for the amperometric determination of hydrogen peroxide. Three months after the ink preparation, the printed enzyme electrodes were found to still exhibit similar sensitivity, demonstrating that catalytic activity is preserved in the proposed ink. Thus, enzyme electrodes can be successfully printed employing highly stable formulation using nanoparticles as carriers.

2.
Diagnostics (Basel) ; 11(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530289

RESUMO

Antibodies are the most used technological tool in histochemistry. However, even with monoclonal antibodies, their standardization is difficult due to variation of biological systems as well as to variability due to the affinity and amplification of the signal arising from secondary peroxidase detection systems. In this article we combined two synthetic molecules to facilitate the standardization of a detection protocol of protein markers in histological sections. The first molecule was an aptamer, a 50-base single-stranded DNA fragment, which recognizes a PTEN tumor suppressor. The second molecule used was also another single stranded 18-base aptamer DNA fragment, which forms a quadruplex structure guanine box. This G-quadruplex recognizes and attaches a molecule of hemin, increasing the catalytic capacity for the hydrogen peroxide. Our results show how the correct structural design of DNA combining an aptamer together with the peroxidase-like DNAzyme allows to detect proteins in histological sections. This tool offers the standardization of the detection of prognostic markers in cancer, in quality and quantity, due to its synthetic nature and its 1:1 antigen:enzyme ratio. This is the first time that reproducible results have been presented in histological sections staining a cancer marker using a single-stranded DNA molecule with dual function.

3.
Biosens Bioelectron ; 80: 24-33, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26802749

RESUMO

Access to appropriate diagnostic tools is an essential component in the evaluation and improvement of global health. Additionally, timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods such as culturing, enzyme linked immunosorbent assay (ELISA) or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments making them not adaptable to point-of-care (PoC) needs at resource-constrained places and primary care settings. Therefore, there is an unmet need to develop portable, simple, rapid, and accurate methods for PoC detection of infections. Here, we present the development and validation of a portable, robust and inexpensive electrochemical magnetic microbeads-based biosensor (EMBIA) platform for PoC serodiagnosis of infectious diseases caused by different types of microorganisms (parasitic protozoa, bacteria and viruses). We demonstrate the potential use of the EMBIA platform for in situ diagnosis of human (Chagas disease and human brucellosis) and animal (bovine brucellosis and foot-and-mouth disease) infections clearly differentiating infected from non-infected individuals or animals. For Chagas disease, a more extensive validation of the test was performed showing that the EMBIA platform displayed an excellent diagnostic performance almost indistinguishable, in terms of specificity and sensitivity, from a fluorescent immunomagnetic assay and the conventional ELISA using the same combination of antigens. This platform technology could potentially be applicable to diagnose other infectious and non-infectious diseases as well as detection and/or quantification of biomarkers at the POC and primary care settings.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Testes Sorológicos/métodos , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Humanos , Magnetismo , Parasitos/isolamento & purificação , Parasitos/patogenicidade , Sistemas Automatizados de Assistência Junto ao Leito , Vírus/isolamento & purificação , Vírus/patogenicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-21095891

RESUMO

The development of an inmunosensor for the point-of-care detection of the foot-and-mouth cattle disease is presented. The detector is based on an ELISA method with electrochemical detection. A non-structural protein, 3ABC, is used to selectively detect antibodies is used to selectively detect anti-3ABC antibodies produced after infection. The biological test is performed onto a screen printed electrodes. A dedicated small, portable potentiostat is employed for the control of the sensors, as well as data acquisition, processing, and storage.


Assuntos
Anticorpos/imunologia , Condutometria/instrumentação , Ensaio de Imunoadsorção Enzimática/instrumentação , Febre Aftosa/diagnóstico , Febre Aftosa/imunologia , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Proteínas não Estruturais Virais/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...