Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1596: 175-182, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898380

RESUMO

Long-chain alkenones (LCAs) and alkenoates (LCEs) are highly valuable biomarkers for paleotemperature reconstructions. A major problem, however, for accurate quantification of these compounds using gas chromatography (GC) is co-elution with steryl ethers, wax esters, saturated ketones and other numerous mid-polarity compounds frequently encountered in marginal marine and lake sediments. Co-elution during GC separation is prevalent, particularly if the full homologous series of alkenones and alkenoates are to be analyzed. Taking advantage of the presence of two or more double bonds in LCAs and LCEs, the conventional silica gel impregnated with silver nitrate has previously been used to remove co-eluting compounds for LCAs. However, this conventional argentation chromatography is hampered by the extreme instability of silver nitrate, poor reproducibility, low recovery and short lifetime. Here we demonstrate a highly efficient flash chromatographic approach based on silver thiolate chromatographic material (AgTCM) that overcomes the shortcomings of the traditional argentation chromatography and allows repeated sample preparation (up to 62 samples in one test) with little loss in separation efficiency. AgTCM selectively extracts LCAs and LCEs and effectively eliminates co-eluting compounds including steryl ethers and wax esters for the subsequent gas chromatography (GC) analysis. This new method, therefore, allows low-cost and high-throughput sample preparation for comprehensive quantification of the full homologous series of LCAs and LCEs in marine and lake sediments.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Gasosa , Ésteres , Éteres , Cetonas , Ésteres/isolamento & purificação , Éteres/isolamento & purificação , Cetonas/isolamento & purificação , Reprodutibilidade dos Testes
2.
Geobiology ; 17(3): 272-280, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30720914

RESUMO

Members of the order Isochrysidales are unique among haptophyte lineages in being the exclusive producers of alkenones, long-chain ketones that are commonly used for paleotemperature reconstructions. Alkenone-producing haptophytes are divided into three major groups based largely on molecular ecological data: Group I is found in freshwater lakes, Group II commonly occurs in brackish and coastal marine environments, and Group III consists of open ocean species. Each group has distinct alkenone distributions; however, only Groups II and III Isochrysidales currently have cultured representatives. The uncultured Group I Isochrysidales are distinguished geochemically by the presence of tri-unsaturated alkenone isomers (C37:3b Me, C38:3b Et, C38:3b Me, C39:3b Et) present in water column and sediment samples, yet their genetic diversity, morphology, and environmental controls are largely unknown. Using small-subunit (SSU) ribosomal RNA (rRNA) marker gene amplicon high-throughput sequencing of environmental water column and sediment samples, we show that Group I is monophyletic with high phylogenetic diversity and contains a well-supported clade separating the previously described "EV" clade from the "Greenland" clade. We infer the first partial large-subunit (LSU) rRNA gene Group I sequence phylogeny, which uncovered additional well-supported clades embedded within Group I. Relative to Group II, Group I revealed higher levels of genetic diversity despite conservation of alkenone signatures and a closer evolutionary relationship with Group III. In Group I, the presence of the tri-unsaturated alkenone isomers appears to be conserved, which is not the case for Group II. This suggests differing environmental influences on Group I and II and perhaps uncovers evolutionary constraints on alkenone biosynthesis.


Assuntos
Haptófitas/classificação , Haptófitas/metabolismo , Cetonas/análise , Lagos/química , Alaska , Evolução Biológica , DNA Ribossômico/análise , Alemanha , Haptófitas/genética , Islândia , Lagos/microbiologia , Filogenia , Análise de Sequência de RNA
3.
Rapid Commun Mass Spectrom ; 30(1): 112-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26661977

RESUMO

RATIONALE: Measurements of alkenone unsaturation ratios are widely used for paleotemperature reconstructions in ocean and lake environments. Previously, we reported the discovery of a series of tri-unsaturated alkenone positional isomers (Δ(14, 21, 28) ) from oligosaline and freshwater lakes in Greenland and Alaska. In this work we provide a detailed analysis of the structures and isotopic compositions (δ(13) C and δ(2) H) of the alkenones produced by the "Greenland haptophyte". METHODS: Alkenones were extracted from sediments of Lake BrayaSø, Greenland. Alkenone double-bond positions were determined by GC/EI-MS analysis of alkenone dimethyl disulfide and cyclobutylimine derivatives. Alkenones were purified by semi-preparative HPLC using a silver(I) thiolate stationary phase. Carbon and hydrogen isotope analysis was performed by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). RESULTS: A series of novel tri-unsaturated alkenone positional isomers were identified among four alkenone homologues (i.e. C37 Me , C38 Me , C38 Et , and C39 Et ) with double-bond positions at Δ(14, 21, 28) . The hydrogen isotope compositions (δ(2) H, VSMOW) of the tri-unsaturated positional isomers from C37 Me and C38 Et were slightly depleted (~ -11 ‰) relative to the common tri-unsaturated alkenone. The carbon isotope composition (δ(13) C, VPDB) of the tri-unsaturated positional isomers from the C37 Me , C38 Me , C38 Et , and C39 Et alkenones were significantly enriched (~ +4 ‰) relative to the common alkenones (di-, tri-, and tetra-unsaturated). CONCLUSIONS: The novel tri-unsaturated alkenone positional isomers produced by the Greenland haptophyte possess Δ(14, 21, 28) double-bond positions, instead of the common Δ(7, 14, 21) double-bond positions. The hydrogen isotope values suggest the novel tri-unsaturated positional isomers could be biosynthetic precursors to the tetra-unsaturated alkenones (Δ(7, 14, 21, 28) ). However, the significantly higher carbon isotope values of the tri-unsaturated positional isomers relative to the common di-, tri- and tetra-unsaturated alkenones suggest these positional isomers may have different/additional biosynthetic precursors.


Assuntos
Haptófitas/química , Cetonas/química , Dissulfetos/química , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Groenlândia , Isomerismo , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...